***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

12. Методы расширенного спектра

12.5.2. Сопровождение

По окончании этапа (грубой) синхронизации начинается этап сопровождения, или достижения идеальной синхронизации. Различают когерентные и некогерентные контуры сопровождения. Когерентным называется контур, где известны частота и фаза несущей волны, а контур сопровождения может работать с узкополосным сигналом. Если же частоту несущей точно определить невозможно (например, из-за доплеровского эффекта) — имеем некогерентный контур. Поскольку в большинстве случаев фаза и частота несущей априори не известны точно, для сопровождения полученного псевдослучайного кода используются именно некогерентные контуры. Кроме того, различают контуры постоянного сопровождения с задержкой и опережением (full-time early-late tracking loop), часто называемые контурами автоподстройки по задержке (delay-locked loop — DLL), и контуры сопровождения с задержкой и опережением с разделением времени (time-shared early-late tracking loop), часто именуемые контурами внесения искусственных флуктуации (tau-dither loop — TDL). Простой пример применения некогерентного контура DLL в системе расширения спектра методом прямой последовательности при использовании двоичной фазовой манипуляции (binary phase-shift keying — BPSK) представлен на рис. 12.22. Несущая модулируется информационным сигналом x(t) и кодовым сигналом g(t) с использованием схемы BPSK. Как и ранее, считаем, что шумы и интерференция отсутствуют, поэтому можем записать следующее.

(12.36)

Рис.12.22. Использование контура DLL для сопровождения сигналов системы DS/SS

Здесь А — коэффициент усиления системы; — случайный угол сдвига фаз в диапазоне (0,2). Сгенерированный контуром сопровождения кодовый сигнал сдвинут по отношению к полученному сигналу g(t) на время , причем < Tc/2. Для проведения точной синхронизации контур генерирует две псевдослучайные последовательности: g(t + Tc/2 +) и g(t - Tc/2 + ), одна из которых отстает от другой на время передачи элементарного сигнала. Два узкополосных фильтра предназначаются для пропускания данных, а также для усреднения произведения g(t) и двух псевдослучайных последовательностей g(t±Tc/2+) (в работе [4] указывается оптимальная ширина полосы для данного типа фильтров). Квадратичный детектор огибающей исключает данные, поскольку |x(t)| = 1. Выход каждого детектора огибающей можно приблизительно записать следующим образом.

(12.37)

Оператор Е{} обозначает математическое ожидание, a Rg(x) — это автокорреляционная функция псевдослучайного сигнала, как показано на рис. 12.8. Сигнал обратной связи Y() представлен на рис. 12.23. Если больше нуля, Y() указывает генератору, управляемому напряжением, (ГУН) увеличить частоту, что приводит к уменьшению . Если значение отрицательно, частота ГУН уменьшается, в результате возрастает. Если — это достаточно малая величина, g(t)g(t+ ) = 1, что дает в итоге суженный сигнал Z(t). Впоследствии Z(t) подается на вход обычного демодулятора данных. Подробное описание использования контуров DLL приводится в работах [4, 12-14].

Недостатком контура DLL является то, что цепи опережения и запаздывания должны быть точно синхронизированы, иначе Y() будет сдвинут по фазе и, соответственно, его значение будет ненулевым при нулевой ошибке. Данная проблема решается с помощью контура с разделением времени. В таком контуре опережающий и запаздывающий корреляторы используются в разное время. Очевидным преимуществом является то, что для работы контура достаточно одного коррелятора. Кроме того, снижается актуальность проблемы смещения постоянной составляющей.

Рис.12.23. Y()- сигнал обратной связи контура DLL

При нормальной работе многих управляющих контуров контрольный сигнал практически равен нулю. С этим связан один из недостатков таких систем — нулевой сигнал часто приводит к тому, что контур становится неуправляемым. Особенно остро эта проблема проявляется в сложных контурах сопровождения, которые изменяют коэффициент усиления в зависимости от внешних условий. На рис. 12.24 представлен контур TDL; это одна из разновидностей схем сопровождения с разделением времени. Для решения проблемы нулевого сигнала в данном контуре вводится небольшая намеренная погрешность. В результате выходной сигнал контура как бы "вибрирует" вокруг точного сигнала. Обычно отклонение от нормы невелико, поэтому потери в производительности минимальны. Преимущество контура TDL состоит в том, что для выполнения функций сопровождения и сужения кодовой последовательности достаточно одного коррелятора. Как и в случае DLL, проверяется корреляция полученного сигнала с опережающей и запаздывающей версиями псевдослучайного кода приемника. Как показано на рис. 12.24, генератором псевдослучайного кода управляет синхронизирующий сигнал, в фазу которого добавляются псевдослучайные флуктуации, лежащие в пределах квадратичной коммутационной функции. Постоянные изменения фазы позволяют избежать нарушений в работе контура, устраняя необходимость слежения за идентичностью функций в опережающем и запаздывающем контурах. Если боковые фильтры контура TDL спроектированы должным образом, отношение сигнал/шум в этом контуре будет меньше приблизительно на 1,1 дБ по сравнению с контуром DLL [4]. Более подробное описание синхронизации псевдослучайных кодов приводится в работах [4, 15, 16].




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.