Лекции по Теоретическим основам цифровой связи   

13. Кодирование источника

13.6. Преобразующее кодирование

В разделе 13.5.1 изучались векторные устройства квантования в терминах множества вероятных моделей и технологий для определения одной модели во множестве, наиболее близком к входной модели. Одной из мер качества аппроксимации является взвешенная среднеквадратическая ошибка.

(13.76)

где В(Х) — это весовая матрица, а ХT— транспонированный вектор X. Минимизация может быть вычислительно проще, если весовая матрица является диагональной. Диагональная весовая матрица дает координатное множество с нарушенной связью (некоррелированное), так что ошибка минимизации вследствие квантования может находиться независимо по каждой координате.

Таким образом, преобразующее кодирование включает следующую последовательность операций, которые изображены на рис. 13.32.

Рис. 13.32. Блочная диаграмма: преобразующее кодирование

1. К входному вектору применяется обратимое преобразование.

2. Коэффициенты преобразования квантуются.

3. Квантованные коэффициенты передаются и получаются.

4. Преобразование обращается с использованием квантованных коэффициентов.

Отметим, что при преобразовании не выполняется никакого кодирования источника; просто допускается более удобное описание вектора сигнала, которое позволяет легче

использовать кодирование источника. Задача преобразования состоит в отображении коррелированной входной последовательности в другую систему координат, в которой координаты имеют меньшую корреляцию. Напомним, что это в точности представляет собой задачу, выполняемую кодером с предсказанием. Кодирование источника происходит посредством присвоения битового значения различным коэффициентам преобразования. Как часть этого присвоения, коэффициенты могут быть разделены на подмножества, которые квантуются с помощью различного числа бит, но не с помощью различных размеров шага квантования. Это присвоение отражает динамическую область (дисперсию) каждого коэффициента и может быть взвешено мерой, отражающей важность (относительно человеческого восприятия) элемента, переносимого каждым коэффициентом [17]. Например, подмножество коэффициентов может быть сведено к нулевой амплитуде или может быть квантовано с помощью 1 или 2 бит.

Преобразование может быть независимым от вектора данных. Примерами таких преобразований являются дискретное преобразование Фурье (discrete Fourier transform — DFT, ДПФ), дискретное преобразование Уолша-Адамара (discrete Walsh-Hadamar transform — DWHT), дискретное косинус-преобразование (discrete cosine transform — DCT, ДКП) и дискретное наклонное преобразование (discrete slant transform — DST). Преобразование может быть также получено из вектора данных, как это делается в дискретном преобразовании Карунена-Лоэва (discrete Karhunen-Loeve transform — DKLT), иногда называемом преобразованием основного компонента (principal component transform — РСТ) [18]. Независимые от данных преобразования являются самыми простыми в реализации, но они не так хороши, как информационно-зависимые. Зачастую вычислительная простота является достаточным оправданием для использования независящих от данных преобразований. При хорошем субоптимальном преобразовании потери эффективности кодирования незначительны (как правило, меньше 2 дБ), и обычно при демонстрации рабочих характеристик упоминается ухудшение качества.



*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.