Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->

13.7.1. Свойства кодов. Теоретические основы цифровой связи

Лекции по Теоретическим основам цифровой связи   

13. Кодирование источника

13.7.1. Свойства кодов

Ранее обращалось внимание на свойства, которым должен удовлетворять полезный код. Некоторые из этих свойств являются очевидными, а некоторые — нет. Желаемые свойства стоят того, чтобы их перечислить и продемонстрировать. Рассмотрим следующий трехсимвольный алфавит со следующими вероятностными соответствиями.

a

0.73

b

0.25

c

0.02

Входному алфавиту сопутствуют следующие шесть двоичных кодовых соответствий, где крайний правый бит является наиболее ранним.

Символ

Код 1

Код 2

Код 3

Код 4

Код 5

Код 6

a

00

00

0

1

1

1

b

00

01

1

10

00

01

c

11

10

11

100

01

11

Изучите предлагаемые соответствия и попытайтесь определить, какие коды являются практичными.

Свойство единственности декодирования. Единственным образом декодируемые коды позволяют обратить отображение в исходный символьный алфавит. Очевидно, код 1 в предыдущем примере не является единственным образом декодируемым, так как символам а и b соответствует одна и та же двоичная последовательность. Таким образом, первым требованием полезности кода является то, чтобы каждому символу соответствовала уникальная двоичная последовательность. При этих условиях все другие коды оказываются удовлетворительными до тех пор, пока мы внимательно не изучим коды 3 и 6. Эти коды действительно имеют уникальную двоичную последовательность, соответствующую каждому символу. Проблема возникает при попытке закодировать последовательность символов. Например, попытайтесь декодировать двоичное множество 10111 при коде 3. Это b, a, b, b, b; b, a, b, с или b, а, с, b? Попытка декодировать ту же последовательность в коде 6 вызывает аналогичные сложности. Эти коды не являются единственным образом декодируемыми, даже если отдельные знаки имеют единственное кодовое соответствие.

Отсутствие префикса. Достаточным (но не необходимым) условием того, что код единственным образом декодируем, является то, что никакое кодовое слово не является префиксом любого другого кодового слова. Коды, которые удовлетворяют этому условию, называются кодами, свободными от префикса. Отметим, что код 4 не является свободным от префикса, но он единственным образом декодируем. Свободные от префикса коды также обладают таким свойством — они мгновенно декодируемы. Код 4 имеет свойство, которое может быть нежелательным. Он не является мгновенно декодируемым. Мгновенно декодируемый код — это такой код, для которого граница настоящего кодового слова может быть определена концом настоящего кодового слова, а не началом следующего кодового слова. Например, при передаче символа b с помощью двоичной последовательности 10 в коде 4, получатель не может определить, является ли это целым кодовым словом для символа b или частью кодового слова для символа с. В противоположность этому, коды 2 и 5 являются свободными от префикса.






Добавить страницу в закладки ->
© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные и гуманитарные науки.

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru