***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

13. Кодирование источника

13.8.2.1. JPEG

JPEG (Joint Photography Experts Group — объединенная группа экспертов в области фотографии) — это общее название, которое дано стандарту ISO/JPEG 10918-1 и стандарту ITU-T Recommendation T.81 "Цифровое сжатие постоянных изображений непрерывного тона". JPEG, в основном, известен как основанная на преобразовании схема сжатия с потерями. Сжатие с потерями допускает ошибки в построении сигнала. Уровни ошибок должны быть ниже порога восприимчивости человеческого глаза. JPEG поддерживает три режима работы, связанных с дискретным косинус-преобразованием (discrete cosine transform — DCT, ДКП): последовательное ДКП, прогрессивное ДКП и иерархическое, а также режим без потерь с использованием дифференциального предсказания и энтропии кодирования ошибки предсказания. ДКП — это численное преобразование, связанное с дискретным преобразованием Фурье (discrete Fourier transform — DFT, ДПФ) и предназначенное для получения спектрального разложения четно-симметричных последовательностей. Если входная последовательность является четно-симметричной, нет необходимости в синусоидальных компонентах преобразования. Следовательно, ДКП может заменить ДПФ.

Начнем с введения двухмерного преобразования ДКП 88. Сначала прокомментируем использование ДКП для образования спектрального описания блока 88 пикселей. Двухмерное ДКП — это сепарабельное преобразование, которое может быть записано в виде двойной суммы по двум размерностям. Сепарабельное ДКП производит восемь 8-точечных ДКП в каждом направлении. Следовательно, основной компоновочный блок представляет собой единичное 8-точечное ДКП. Возникает вопрос, почему используется ДКП, а не какое-либо другое преобразование, например ДПФ. Ответ связан с теоремой о дискретном представлении и преобразованием Фурье. Преобразование в одной области приводит к периодичности в другой. Если преобразуется временной ряд, его спектр становится периодичным. С другой стороны, если преобразуется спектр временного ряда, временной ряд периодически продолжается. Этот процесс известен как периодическое расширение и обозначается результирующей периодограммой. Периодическое расширение исходных данных (рис. 13.40) демонстрирует разрыв на границах, который ограничивает степень спектрального затухания в спектре величиной 1/f Можно образовать четное расширение данных, отображая данные относительно одной из границ. Если данные являются периодически расширенными, как показано на рис. 13.40, разрывность уже свойственна не амплитуде данных, а ее первой производной, так что степень спектрального затухания увеличивается до 1/f2. Более быстрая скорость спектрального затухания приводит к меньшему числу значимых спектральных членов. Еще одним преимуществом ДКП есть то, что поскольку данные четно-симметричные, их преобразование также является действительным и симметричным; следовательно, отсутствует необходимость в нечетно-симметричных базисных членах — функциях синуса.

Поскольку амплитуда образа имеет сильную корреляцию на небольших пространственных интервалах, значение ДКП блока 88 пикселей определяется, в основном, окрестностью постоянной составляющей и относительно небольшим числом иных значимых членов. Типичное множество амплитуд и их преобразование ДКП представлено на рис. 13.41. Отметим, что спектральные члены убывают, по крайней мере, как 1/f2 и большинство членов высокой частоты, в основном, нулевые. Спектр посылается на устройство квантования, которое использует стандартные таблицы квантования для присвоения бит спектральным членам согласно их относительным амплитудам и их психовизуальному значению. Для компонентов яркости и цветности используются различные таблицы квантования.

Рис. 13.41. Пиксели и амплитуды ДКП, описывающие один и тот же блок 88 пикселей

Чтобы использовать преимущество большого числа нулевых позиций в квантованном ДКП, спектральные адреса ДКП сканируются зигзагообразным образом, как изображено на рис. 13.42. Зигзагообразная модель обеспечивает длинную последовательность нулей. Это улучшает эффективность кодирования группового кода Хаффмана, описывающего спектральные выборки. На рис. 13.43 представлена блочная диаграмма кодера JPEG. Сигнал, доставленный на кодер, обычным образом представлен в виде растровой развертки с дискретными основными аддитивными цветами: красным, зеленым и синим (RGB). Цветная плоскость преобразуется в сигнал яркости (Y) и цветности 0,564(В - Y) (обозначено как СB) и 0,713(R - Y) (обозначено как СR), используя преобразование цветового контраста, разработанное для цветного ТВ. Это отображение описывается следующим образом.

Здесь компонент Y образован для отражения чувствительности человеческого глаза к основным цветам.

Рис. 13.42. Зигзагообразное сканирование спектральных составляющих ДКП

Рис. 13.43. Блочная диаграмма кодера JPEG

Глаз человека имеет разную чувствительность к цветным компонентам и компонентам яркости (черное и белое). Эта разница в способности к разрешению является следствием распределения рецепторов цвета (палочек) и рецепторов яркости (колбочек) на сетчатке. Человеческий глаз может различать 1-дюймовые чередующиеся черные и белые полоски со 180 футов (1/40 градуса). Для сравнения, 1-дюймовые сине-красные или сине-зеленые цветные полоски невозможно различить с расстояний, больших 40 футов (1/8 градуса). Следовательно, трехцветные образы требуют примерно на 1/25 (1/5 в каждом направлении) больше данных, чем нужно для получения черно-белого изображения. В далеком прошлом фотографы знали, что глаз требует очень малого числа цветных деталей. Чтобы придать образу цвет, существовала живая индустрия, в которой от руки раскрашивали черно-белые фотографии и почтовые открытки. Большинство аналоговых и цифровых цветных ТВ используют преимущество этой разницы в остроте восприятия для доставки дополнительных цветных компонентов через значительно сокращенную полосу частот. Стандарт NTSС определяет доставку всех трех цветов через полосу частот в 0,5 МГц, а>не 4,2 МГц, действительно требуемую яркостным компонентом. Аналогично JPEG использует преимущество разницы в восприятии и выбирает компоненты цветового контраста с половинной частотой в направлении сканирования (x), но не в направлении поперек линий развертки (у).

Сигналы цветового контраста и сигналы с пониженной частотой дискретизации последовательно представлены как блоки 88 в двухмерном ДКП. Выходы ДКП квантуются с помощью соответствующей таблицы и затем зигзагообразно сканируются для передачи на кодер Хаффмана. JPEG использует кодер Хаффмана для кодирования коэффициентов переменной составляющей сигнала, но поскольку компоненты постоянной составляющей имеют высокую корреляцию между соседними блоками, для них используется дифференциальное кодирование. Разумеется, для формирования образа декодер обращает эти операции.




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.