***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

13. Кодирование источника

13.1.2. Источники волновых сигналов

Источник волнового сигнала — это случайный процесс некоторой случайной переменной. Считается, что эта случайная переменная — время, так что рассматриваемый волновой сигнал — это изменяющийся во времени волновой сигнал. Важными примерами изменяющихся во времени волновых сигналов являются выходы датчиков, используемых для контроля процессов и описывающих такие физические величины, как температура, давление, скорость и сила ветра. Значительный интерес представляют такие примеры, как речь и музыка. Волновой сигнал может также быть функцией одной или более пространственных величин (т.е. расположение на плоскости с координатами х и у). Важными примерами пространственных волновых сигналов являются единичные зрительные образы, такие как фотография, или движущиеся зрительные образы, такие как последовательные кадры художественного фильма (24 кадра/с). Пространственные волновые сигналы часто преобразуются в изменяющиеся во времени волновые сигналы посредством сканирования. Например, это делается для систем факсимильной связи и передач в формате JPEG, а также для стандартных телевизионных передач.

13.1.2.1. Функции плотности амплитуд

Дискретные источники описываются путем перечисления их возможных элементов (называемых буквами алфавита) и с помощью их многомерных функций плотности вероятности (probability density function — pdf) всех порядков. По аналогии источники волновых сигналов подобным образом описываются в терминах их функций плотности вероятности, а также параметрами и функциями, определенными с помощью этих функций плотности вероятности. Многие волновые сигналы моделируются как случайные процессы с классическими функциями плотности вероятности и простыми корреляционными свойствами. В процессе моделирования различаются краткосрочные, или локальные (временные), характеристики и долгосрочные, или глобальные. Это деление необходимо, так как многие волновые сигналы являются нестационарными.

Функция плотности вероятности реального процесса может быть не известна разработчику системы. Конечно, в реальном времени для короткого предшествующего интервала можно быстро построить выборочные плотности и использовать их как разумные оценки в течение последующего интервала. Менее претенциозная задача — это создание краткосрочных средних параметров, связанных с волновыми сигналами. Эти параметры — выборочное среднее (или среднее по времени), выборочная дисперсия (или среднеквадратическое значение процесса с нулевым средним) и выборочные коэффициенты корреляции, построенные на предшествующем выборочном интервале. При анализе волновых сигналов входной волновой сигнал преобразуется в процесс с нулевым средним путем вычитания его среднего значения. Например, это происходит в устройствах сравнения сигналов, используемых в аналого-цифровых преобразователях, для которых вспомогательная схема измеряет внутренние смещения от уровня постоянного напряжения канала передачи данных и вычитает их в процессе, известном как автонуль (autozero). Далее оценка дисперсии часто используется для масштабирования входного волнового сигнала, чтобы сопоставить динамику размаха амплитуды последующего волнового сигнала, обусловленную схемой. Этот процесс, выполняемый при сборе данных, называется автоматической регулировкой усиления (automatic gain control — AGC, АРУ). Функцией этих операций, связанных с предварительным формированием сигналов, — вычитание среднего, контроль дисперсии или выравнивание усиления (показанных на рис. 13.2) — является нормирование функций плотности вероятности входного волнового сигнала. Это нормирование обеспечивает оптимальное использование ограниченного динамического диапазона последующих записывающих, передающих или обрабатывающих подсистем.

Многие источники волновых сигналов демонстрируют значительную корреляцию амплитуды на последовательных временных интервалах. Эта корреляция означает, что уровни сигнала на последовательных временных интервалах не являются независимыми. Если временные сигналы независимы на последовательных интервалах, автокорреляционная функция будет импульсной. Многие сигналы, представляющие инженерный интерес, имеют корреляционные функции конечной ширины. Эффективная ширина корреляционной функции (в секундах) называется временем корреляции процесса и подобна временной константе фильтра нижних частот. Этот временной интервал является показателем того, насколько большой сдвиг вдоль оси времени требуется для потери корреляции между данными. Если время корреляции большое, то это значит, что амплитуда волнового сигнала меняется медленно. Наоборот, если время корреляции мало, делаем вывод, что амплитуда волнового сигнала значительно меняется за очень малый промежуток времени.

Рис. 13.2. Удаление среднего и нормирование дисперсии (регулировка усиления) для зависимых от данных систем предварительного формирования сигнала




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.