***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

13. Кодирование источника

13.2.2.1. Сигнал и шум квантования в частотной области

До настоящего момента шум квантования обсуждался с точки зрения его влиж на выборку временного ряда, представляющую дискретный сигнал. Шум квантования может быть также описан в частотной области; это позволяет взглянуть на влияние условий работы, что и будет сделано ниже. В процессе этого изучения предполагает также рассмотрение насыщения (раздел 13.2.3), возмущения (раздел 13.2.4) и квантующих устройств с обратной связью по шуму (раздел 13.2.6).

На рис. 13.7 представлено дискретное преобразование Фурье двух синусоид, которые были образованы линейным 10-битовым АЦП. Сравнительные амплитуды данных синусоид равны 1,0 и 0,01 (т.е. одна на 40 дБ ниже другой). На рис. 13.7, а сигнал низкой частоты (обозначенный 0 дБ) масштабируется на 1 дБ ниже полной динамической области 10-битового квантующего устройства, которую для удобства будем считать единичной. Отметим, что на рис. 13.7, а полномасштабный сигнал 0 дБ находится на 6 дБ ниже входного уровня поглощения 1 дБ. Это объясняется наличием множителя 1/2 в спектральном разложении действительного сигнала по всем ненулевым частотам. Среднее отношение сигнала к шуму квантования (SNR) для 10-битового квантующего устройства равно 60 + С дБ. Для полномасштабной синусоиды константа С равна 1,76 дБ, что делает суммарное отношение SNR примерно равным 62 дБ. При дискретном преобразовании Фурье (discrete Fourier transform — DFT, ДПФ), которое выполнялось для получения графика на рис. 13.7, длина равнялась 256. Поскольку отношение SNR преобразования увеличивается пропорционально длине преобразования (или времени интегрирования), то благодаря преобразованию SNR улучшается на 24 дБ [2] с потерей 3,0 дБ вследствие усечения. Таким образом, на выходе преобразования вершина SNR вследствие квантования равна 62 + 24 - 3 = 83 дБ. Шумовой сигнал на каждой частоте ДПФ может быть представлен как квадратный корень из суммы квадратов гауссовых случайных величин, которая описывается как случайная величина, имеющая распределение хи-квадрат с двумя степенями свободы. Дисперсия (мощность шума) равна квадрату среднего. Таким образом, имеем значительные колебания вокруг математического ожидания уровня мощности шума. Для получения устойчивой оценки нижнего уровня шума нам потребуется среднее по ансамблю. Видно, что нижний уровень шума (получен с помощью 400 средних) равен -83 дБ. К сигналу перед квантованием был добавлен псевдослучайный шум (описанный в разделе 13.2.4), чтобы рандомизировать ошибки квантования. На рис. 13.7, б и в входные сигналы ослабляются относительно полномасштабного входа на 20 и 40 дБ. Это ослабление увеличивает константу С в формуле (13.24) на 20 и 40 дБ, что проявляется как уменьшение спектральных уровней входных синусоид на эти же величины. Отметим, что входной сигнал наивысшей частоты (рис. 13.7, в), который теперь уменьшился на 80 дБ относительно полной шкалы, располагается на 3 дБ ниже среднего уровня шума преобразователя. Синусоида самой низкой частоты на рис. 13.7, в теперь ослаблена на 40 дБ относительно полной шкалы, поэтому характеризуется SNR на 40 дБ меньшим, чем для сигнала на рис. 13.7, а.

Рис. 13.7. Энергетический спектр сигналов, квантованных равномерным АЦП

Рис. 13.7. Энергетический спектр сигналов, квантованных равномерным АЦП (прожолжение)

При минимизации среднего отношения шума к сигналу квантования мы сталкиваемся с противоречием в требованиях. С одной стороны, желательно удерживать сигналы большими по отношению к интервалу квантования q с целью получения большого SNR. С другой стороны, необходимо удерживать сигнал малым, чтобы избежать насыщения квантующего устройства. Противоречивые требования разрешаются путем масштабирования входного сигнала; в результате его среднеквадратическое значение представляет собой заданную долю полномасштабной области значений квантующего устройства. Указанная доля выбирается так, чтобы согласовать ошибки насыщения (взвешенные вероятностями их появления) с ошибками квантования (взвешиваются аналогично) и таким образом достигнуть минимального отношения шума к сигналу. Положение этой желательной рабочей точки преобразователя обсуждается в следующем разделе.




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.