Лекции по Теоретическим основам цифровой связи   

2. Форматирование и узкополосная модуляции

2.4. Форматирование аналоговой информации

Если информация является аналоговой, ее знаковое кодирование (как в случае текстовой информации) невозможно; вначале информацию следует перевести в цифровой формат. Процесс преобразования аналогового сигнала в форму, совместимую с цифровой системой связи, начинается с дискретизации сигнала; результатом этого процесса является модулированный сигнал, который описывается ниже.

2.4.1. Теорема о дискретном представлении

Аналоговый сигнал и его дискретная версия связаны процессом, который называется дискретизацией (sampling process). Этот процесс можно реализовывать по-разному, а наиболее популярной является операция выборки-хранения (sample-and-hold). В этом случае коммутирующе-запоминающий механизм (такой, как последовательность транзистора и конденсатора или затвора и диафильма) формирует из поступающего непрерывного сигнала последовательность выборок (sample). Результатом процесса дискретизации является сигнал в амплитудно-импульсной модуляции (pulse-amplitude modulation - РАМ). Такое название возникло потому, что выходящий сигнал можно описать как последовательность импульсов с амплитудами, определяемыми выборками входящего сигнала. Аналоговый сигнал можно восстановить (с определенной степенью точности) из модулированного сигнала путем прохождения последнего через фильтр нижних частот. Важно знать, насколько точно отфильтрованный модулированный сигнал совпадает с исходным аналоговым сигналом? Ответ на этот вопрос дает теорема о дискретном представлении (sampling theorem), которая формулируется следующим образом [1]: сигнал с ограниченной полосой, не имеющий спектральных компонентов с частотами, которые превышают  Гц, однозначно определяется значениями, выбранными через равные промежутки времени.

                                                                                                  (2.1)

Это утверждение также известно как теорема о равномерном дискретном представлении (uniform sampling theorem). При другой формулировке верхний предел  можно выразить через частоту дискретизации (sampling rate), . В этом случае получаем ограничение, именуемое критерием Найквиста (Nyquist criterion).

                                                                                                     (2.2)

Частота дискретизации  также называется частотой Найквиста (Nyquist rate). Критерий Найквиста - это теоретическое достаточное условие, которое делает возможным полное восстановление аналогового сигнала из последовательности равномерно распределенных дискретных выборок. В следующем разделе демонстрируется справедливость теоремы о дискретном представлении для различных способов взятия выборок.



*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.