Лекции по Теоретическим основам цифровой связи   

3. Узкополосная демодуляция/обнаружение

3.1. Сигналы и шум

3.1.1. Рост вероятности ошибки в системах связи

Задача детектора - максимально безошибочно угадать принятый сигнал, насколько это возможно при данном ухудшении качества сигнала в процессе передачи. Существует две причины роста вероятности ошибки. Первая - это последствия фильтрации в передатчике, канале и приемнике, рассмотренные в разделе 3.3. В этом разделе показано, что неидеальная передаточная функция системы приводит к «размыванию» символов, или межсимвольной интерференции (intersymbol interference - ISI).

Вторая причина роста вероятности ошибки - электрические помехи, порождаемые различными источниками, такими как галактика и атмосфера, импульсные помехи, комбинационные помехи, а также интерференция с сигналами от других источников. (Этот вопрос подробно рассмотрен в главе 5.) При надлежащих мерах предосторожности можно устранить большую часть помех и уменьшить последствия интерференции.

В то же время существуют помехи, устранить которые нельзя; это - помехи, вызываемые тепловым движением электронов в любой проводящей среде. Это движение порождает в усилителях и каналах связи тепловой шум, который аддитивно накладывается на сигнал. Использование квантовой механики позволило разработать хорошо известную статистику теплового шума [1].

Основная статистическая характеристика теплового шума заключается в том, что его амплитуды распределены по нормальному или гауссову закону распределения, рассмотренному в разделе 1.5.5 (рис. 1.7). На этом рисунке показано, что наиболее вероятные амплитуды шума - амплитуды с небольшими положительными или отрицательными значениями. Теоретически шум может быть бесконечно большим, но на практике очень большие амплитуды шума крайне редки. Основная спектральная характеристика теплового шума в системе связи заключается в том, что его двусторонняя спектральная плотность мощности является плоской для всех частот, представляющих практический интерес. Другими словами, в тепловом шуме в среднем на низкочастотные флуктуации приходится столько же мощности на герц, сколько и на высокочастотные флуктуации - вплоть до частоты порядка герц. Если мощность шума характеризуется постоянной спектральной плотностью мощности, шум называется белым. Поскольку тепловой шум присутствует во всех системах связи и для многих систем является доминирующим источником помех, характеристики теплового шума часто используются для моделирования шума при обнаружении и проектировании приемников. Всякий раз, когда канал связи определен как канал AWGN (при отсутствии указаний на другие параметры, ухудшающие качество передачи), мы, по сути, говорим, что ухудшение качества сигнала связано исключительно с неустранимым тепловым шумом.



*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.