Лекции по Теоретическим основам цифровой связи   

3. Узкополосная демодуляция/обнаружение

3.1.2. Демодуляция и обнаружение

В течение данного интервала передачи сигнала, Т, бинарная узкополосная система передает один из двух возможных сигналов, обозначаемых как и . Подобным образом бинарная полосовая система передает один из двух возможных сигналов, обозначаемых как и . Поскольку общая трактовка демодуляции и обнаружения, по сути, совпадает для узкополосных и полосовых систем, будем использовать запись для обозначения передаваемого сигнала, вне зависимости от того, является система узкополосной или полосовой. Это позволяет совместить многие аспекты демодуляции/обнаружения в узкополосных системах, рассмотренные в данной главе, с соответствующими описаниями для полосовых систем, рассмотренных в главе 4. Итак, для любого канала двоичный сигнал, переданный в течение интервала , представляется следующим образом.

Принятый сигнал искажается вследствие воздействия шума и, возможно, неидеальной импульсной характеристики канала и описывается следующей формулой (1.1).

(3.1)

В нашем случае предполагается процессом AWGN с нулевым средним, а знак «*» обозначает операцию свертки. Для бинарной передачи по идеальному, свободному от искажений каналу, где свертка с функцией не ухудшает качество сигнала (поскольку для идеального случая - импульсная функция), вид можно упростить.

(3.2)

Типичные функции демодуляции и обнаружения цифрового приемника показаны на рис. 3.1. Некоторые авторы используют термины «демодуляция» и «обнаружение» как синонимы. В данной книге они имеют различные значения. Демодуляцию (demodulation) мы определим как восстановление сигнала (в неискаженный узкополосный импульс), а обнаружение (detection) - как процесс принятия решения относительно цифрового значения этого сигнала. При отсутствии кодов коррекции ошибок на выход детектора поступают аппроксимации символов (или битов) сообщений (также называемые жестким решением). При использовании кодов коррекции ошибок на выход детектора поступают аппроксимации канальных символов (или кодированных битов) и имеющие вид жесткого или мягкого решения (см. раздел 7.3.2). Для краткости термин «обнаружение» иногда применяется для обозначения совокупности всех этапов обработки сигнала, выполняемых в приемнике, вплоть до этапа принятия решения. Блок преобразования с понижением частоты, показанный на рис. 3.1 в разделе демодуляции, отвечает за трансляцию полосовых сигналов, работающих на определенных радиочастотах. Эта функция может реализовываться различными способами. Она может выполняться на входе приемника, в демодуляторе, распределяться между этими двумя устройствами или вообще не реализовываться.

Рис.3.1. Два основных этапа в процессе демодуляции/ обнаружения цифровых сигналов

В блоке демодуляции и дискретизации (рис. 3.1) изображен принимающий фильтр (по сути, демодулятор), выполняющий восстановление сигнала в качестве подготовки к следующему необходимому этапу - обнаружению. Фильтрация в передатчике и канале обычно приводит к искажению принятой последовательности импульсов, вызванному межсимвольной интерференцией, а значит, эти импульсы не совсем готовы к дискретизации и обнаружению. Задачей принимающего фильтра является восстановление узкополосного импульса с максимально возможным отношением сигнал/шум (signal-to-noise ratio - SNR) и без межсимвольной интерференции. Оптимальный принимающий фильтр, выполняющий такую задачу, называется согласованным (matched), или коррелятором (correlator) и описывается в разделах 3.2.2 и 3.2.3. За принимающим фильтром может находиться выравнивающий фильтр (equalizing filter), или эквалайзер (equalizer); он необходим только в тех системах, в которых сигнал может искажаться вследствие межсимвольной интерференции, введенной каналом. Принимающий и выравнивающий фильтры показаны как два отдельных блока, что подчеркивает различие их функций. Впрочем, в большинстве случаев при использовании эквалайзера для выполнения обеих функций (а следовательно, и для компенсации искажения, внесенного передатчиком и каналом) может разрабатываться единый фильтр. Такой составной фильтр иногда называется просто выравнивающим или принимающим и выравнивающим.

На рис. 3.1 выделены два этапа процесса демодуляции/обнаружения. Этап 1, преобразование сигнала в выборку, выполняется демодулятором и следующим за ним устройством дискретизации. В конце каждого интервала передачи символа Т на выход устройства дискретизации, додетекторную точку, поступает выборка , иногда называемая тестовой статистикой. Значение напряжения выборки прямо пропорционально энергии принятого символа и обратно пропорционально шуму. На этапе 2 принимается решение относительно цифрового значения выборки (выполняется обнаружение). Предполагается, что шум является случайным гауссовым процессом, а принимающий фильтр демодулятора - линейным. Линейная операция со случайным гауссовым процессом дает другой случайный гауссов процесс [2]. Следовательно, на выходе фильтра шум также является гауссовым. Значит, выход этапа 1 можно описать выражением

(3.3)

где - желаемый компонент сигнала, а - шум. Для упрощения записи выражение (3.3) будем иногда представлять в виде . Шумовой компонент - это случайная гауссова переменная с нулевым средним, поэтому - случайная гауссова переменная со средним или , в зависимости от того, передавался двоичный нуль или двоичная единица. Как описывалось в разделе 1.5.5, плотность вероятности случайного гауссового шума можно выразить как

, (3.4)

где - дисперсия шума. Используя выражения (3.3) и (3.4), можно выразить плотности условных вероятностей и .

(3.5)

(3.6)

Эти плотности условных вероятностей показаны на рис. 3.2. Плотность , изображенная справа, называется правдоподобием и показывает плотность вероятности случайной переменной при условии передачи символа . Подобным образом функция (слева) является правдоподобием и показывает плотность вероятности при условии передачи символа . Ось абсцисс, , представляет полный диапазон возможных значений выборки, взятой в течение этапа 1, изображенного на рис. 3.1.

Рис.3.2. Плотности условных вероятностей: и

После того как принятый сигнал преобразован в выборку, действительная форма сигнала уже не имеет значения; сигналы всех типов, преобразованные в одинаковое значение , идентичны для схемы обнаружения. Далее будет показано, что оптимальный принимающий фильтр (согласованный фильтр) на этапе 1 (рис. 3.1) отображает все сигналы с равными энергиями в одну и ту же точку . Следовательно, важным параметром процесса обнаружения является энергия (а не форма) принятого сигнала, именно поэтому анализ обнаружения для узкополосных сигналов не отличается от анализа для полосовых сигналов. Поскольку является сигналом напряжения, пропорциональным энергии принятого символа, то чем больше амплитуда , тем более достоверным будет процесс принятия решения относительно цифрового значения сигнала. На этапе 2 обнаружение выполняется посредством выбора гипотезы, являющейся следствием порогового измерения

, (3.7)

где и - две возможные (бинарные) гипотезы. Приведенная запись указывает, что гипотеза выбирается при , а - при . Если , решение может быть любым. Выбор , равносилен тому, что передан был сигнал , а значит, результатом обнаружения является двоичная единица. Подобным образом выбор равносилен передаче сигнала , а значит, результатом обнаружения является двоичный нуль.



*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.