Лекции по Теоретическим основам цифровой связи   

3. Узкополосная демодуляция/обнаружение

3.4.4. Заданное и адаптивное выравнивание

В инвариантных относительно времени каналах с известными частотными характеристиками, характеристики канала могут измеряться, и, соответственно, могут подгоняться значения весовых коэффициентов отводов. Если весовые коэффициенты остаются фиксированными в течение всего процесса передачи данных, выравнивание называется заданным (preset); простой метод заданного выравнивания заключается в установке весовых коэффициентов , согласно некоторым усредненным знаниям о канале. Такой метод использовался для передачи информации по телефонным каналам со скоростью, не превышающей 2400 бит/с. Еще один метод заданного выравнивания состоит в передаче настроечной последовательности, которая в приемнике сравнивалась с последовательностью, сгенерированной локально. Отличия последовательностей позволяют установить весовые коэффициенты . Важным моментом использования любой разновидности заданного выравнивания является то, что установка параметров производится либо единожды, либо в исключительно редких случаях (например, при прерывании передачи и необходимости ее повторной настройки).

Тип выравнивания, способный отслеживать постепенные изменения, называется адаптивным (adaptive). Его реализация может включать периодическую или непрерывную «подборку» весовых коэффициентов отводов. Периодическая корректировка выполняется путем периодической передачи начальной комбинации битов или краткой настроечной последовательности, заранее известной приемнику. Кроме того, начальная комбинация битов используется приемником для определения начала передачи, установки уровня автоматической регулировки усиления (automatic gain control - AGC) и для согласования с принятым сигналом внутренних часов и местных гетеродинов. Непрерывная подстройка осуществляется посредством замещения известной тестовой последовательности набором информационных символов, которые получены на выходе эквалайзера и считаются известными данными. При непрерывной и автоматической (наиболее распространенный подход) настройке используется метод, управляемый решением (decision directed) [11]. Название метода не стоит путать с DFE - эквалайзером с решающей обратной связью. Управление решением связано только со способом юстировки (с помощью сигнала от детектора) весовых коэффициентов отводов фильтра. Эквалайзер DFE - это наличие дополнительного фильтра на выходе детектора, рекурсивным образом возвращающего сигнал на вход детектора. Следовательно, при использовании DFE существует два фильтра (направляющий и фильтр обратной связи), обрабатывающие данные для снижения межсимвольной интерференции.

Недостатком заданного выравнивания является то, что оно требует предварительной настройки в начале каждой новой передачи. Кроме того, нестационарные каналы, вследствие межсимвольной интерференции и фиксированных весовых коэффициентах отводов, могут приводить к ухудшению производительности системы. Адаптивное выравнивание, в частности адаптивное выравнивание, управляемое решением, успешно устраняет межсимвольную интерференцию, если первоначальная вероятность ошибки не превышает один процент (эмпирическое правило). Если вероятность ошибки превышает один процент, эквалайзер, управляемый решением, может и не дать требуемого результата. Общее решение этой проблемы - инициализировать эквалайзер с альтернативным процессом, (таким, как передача начальной комбинации битов), что позволит обеспечить низкую вероятность ошибки в канале, а затем переключиться в режим управления решением. Чтобы избежать служебных издержек, вносимых начальной комбинацией битов, проекты многих систем предусматривают работу в режиме непрерывного широковещания с использованием для первоначальной оценки канала алгоритмов слепого выравнивания (blind equalization). Эти алгоритмы согласовывают коэффициенты фильтра со статистикой выборок, а не с решениями относительно значений выборок [11].

Для оценки оптимальных коэффициентов автоматические эквалайзеры используют итеративные методы. Система уравнений, приведенная в выражении (3.93), не учитывает воздействие шума канала. При получении устойчивого решения для значений весовых коэффициентов фильтра, требуется усреднять либо данные для устойчивой статистики сигнала, либо зашумленное решение, полученное из зашумленных данных. Сложность алгоритма и проблемы численной устойчивости часто приводит к разработке алгоритмов, усредняющих зашумленные решения. Наиболее надежным из этого класса алгоритмов является алгоритм минимальной среднеквадратической (least-mean-square - LMS) ошибки. Каждая итерация этого алгоритма использует зашумленную оценку градиента ошибок для регулировки весовых коэффициентов относительно снижения среднеквадратической ошибки. Градиент шума - это просто произведение скалярного значения ошибки и вектора данных . Вектор - это вектор выборок канала, которые подверглись воздействию шума и в момент k находились на выравнивающем фильтре. Выше использовалось следующее математическое представление: передавался импульс, и выравнивающий фильтр работал с последовательностью выборок (вектором), представляющей импульсный отклик канала. Эти принятые выборки (в виде сдвига во времени) изображались как матрица х. Теперь, вместо использования отклика на импульс, предполагается передача данных на вход фильтра (рис. 3.27), соответственно определяется вектор принятых выборок , представляющий информационный отклик канала. Ошибка записывается как разность желаемого сигнала и сигнала, полученного на выходе фильтра.

(3.93)

Здесь - желаемый выходной сигнал (выборка без межсимвольной интерференции), а - оценка в момент времени k (производится в устройстве квантования, показанном на рис. 3.27), имеющая следующий вид.

(3.94)

В формуле (3.94) суммирование представляет свертку входящих информационных выборок с весовыми коэффициентами отводов , где - коэффициент -го отвода в момент времени k, а - транспонированный вектор весовых коэффициентов в момент времени k. Далее будет показано, что итеративный процесс, обновляющий значения весовых коэффициентов в каждый момент времени k, имеет следующий вид.

(3.95)

Здесь - вектор весовых коэффициентов фильтра в момент времени k, а - малый член, ограничивающий шаг коэффициентов, а значит, контролирующий скорость сходимости алгоритма и дисперсию устойчивого решения. Это простое соотношение является следствием принципа ортогональности, утверждающего, что ошибка, сопровождающая оптимальное решение, ортогональна обрабатываемым данным. Поскольку алгоритм рекурсивен (по отношению к весовым коэффициентам), необходимо следить за его устойчивостью. Устойчивость гарантируется, если параметр меньше значения обратной энергии данных в фильтре. Если алгоритм является устойчивым, он в среднем сходится к оптимальному решению, при этом его дисперсия пропорциональна параметру . Таким образом, желательно, чтобы параметр сходимости был больше (для более быстрой сходимости), но не настолько, чтобы привести к неустойчивости, хотя, с другой стороны, малый параметр обеспечивает малую дисперсию. Обычно для получения низкодисперсного устойчивого решения выбирается равным фиксированной небольшой величине [12]. Существуют схемы [13], позволяющие меняться от больших значений к меньшим в процессе получения устойчивого решения.

Отметим, что уравнения (3.93)-(3.95) приведены в контексте вещественных сигналов. Если используется квадратурная реализация, так что сигнал описывается вещественной и мнимой (или синфазной и квадратурной) упорядоченными парами, то каждый канал на рис. 3.27 в действительности состоит из двух каналов, и уравнения (3.93)-(3.95) необходимо записывать в комплексной форме. (Квадратурная реализация подробно рассмотрена в разделах 4.2.1 и 4.6.)



*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.