Лекции по Теоретическим основам цифровой связи   

3. Узкополосная демодуляция/обнаружение

Задачи

3.1. Определите, являются ли сигналы и ортогональными на интервале , где , , , в следующих случаях.

а) и

б) и

в) и

г) и

д) и

е) и

3.2. а) Покажите, что три функции, приведенные на рис. 33.1, попарно ортогональны на интервале (-2, 2).

Рис. З3.1

б) Определите значение константы А, преобразующей набор функций из п. а в набор ортонормированных функций.

в) Выразите сигнал через ортонормированные функции, полученные при выполнении п. б.

3.3. Даны следующие функции

и

Определите константу А, при которой функции и ортогональны на интервале .

3.4. Предположим, что используется некоторая система цифровой связи; сигнальные компоненты вне приемника-коррелятора с равной вероятностью принимают значения или -1 В. Определите вероятность появления ошибочного бита, если гауссов шум на вы ходе коррелятора имеет единичную дисперсию.

3.5. Биполярный двоичный сигнал - это импульс +1 или -1 В на интервале . К сигналу добавляется аддитивный белый гауссов шум с двусторонней спектральной плотностью мощности Вт/Гц. Если обнаружение принятого сигнала производится с помощью согласованного фильтра, определите максимальную скорость передачи битов, которую можно поддерживать при вероятности появления ошибочного бита .

3.6. Биполярные импульсные сигналы амплитуды ±1 В принимаются при шуме AWGN с дисперсией 0,1 . Определите оптимальный (дающий минимальную вероятность ошибки) порог для обнаружения с использованием согласованного фильтра при следующих априорных вероятностях: (a) ; (б) ; (в) . Объясните влияние априорных вероятностей на значение . (Подсказка: используйте формулы (Б. 10)-(Б. 12).)

3.7. Двоичная система связи передает сигналы . Тестовая статистика приемника , где компонент сигнала равен или , а компонент шума имеет равномерное распределение. Плотности условного распределения даются выражениями

и

Определите вероятность появления ошибки для равновероятной передачи сигналов и использования оптимального порога принятия решения.

3.8. а) Чему равна минимальная ширина полосы, необходимая для передачи без межсимвольной интерференции сигнала с использованием 16-уровневой кодировки РАМ на скорости 10 Мбит/с?

б) Чему равен коэффициент сглаживания, если доступная полоса равна 1,375 МГц?

3.9. Сигнал речевого диапазона (300-3300 Гц) оцифровывается так, что квантовое искажение удвоенного максимального напряжения сигнала. Предположим, что частота дискретизации равна 8000 выборок/с и используется 32-уровневая кодировка РАМ. Определите теоретическую минимальную ширину полосы, при которой еще не возникает межсимвольная интерференция.

3.10. Двоичные данные передаются со скоростью 9600 бит/с с использованием 8-уровневой модуляции РАМ и фильтра с характеристикой типа приподнятого косинуса. Частотный отклик системы не превышает 2,4 кГц.

а) Чему равна скорость передачи символов?

б) Чему равен коэффициент сглаживания характеристики фильтра?

3.11. Сигнал речевого диапазона (300-3300 Гц) дискретизируется с частотой 8000 выборок/с. Выборки можно передавать сразу в виде импульсов РАМ или каждую выборку вначале можно преобразовать в формат РСМ и использовать для передачи двоичные (РСМ) сигналы.

а) Чему равна минимальная ширина полосы системы, необходимая для обнаружения импульсов РАМ без межсимвольной интерференции и с параметром сглаживания фильтра ?

б) Используя ту же характеристику выравнивания, что и в предыдущем пункте, определите минимальную ширину полосы, необходимую для обнаружения двоичных сигналов (кодировка РСМ), если выборки квантовались с использованием восьми уровней.

в) Повторите п. б для 128 уровней.

3.12. Аналоговый сигнал форматирован в формате РСМ и передается с использованием двоичных сигналов через канал с полосой 100 кГц. Предполагается, что используются 32 уровня квантования и что полная эквивалентная передаточная функция - приподнятый косинус с выравниванием .

а) Найдите максимальную скорость передачи битов, которую может поддерживать система без межсимвольной интерференции.

б) Найдите максимальную ширину исходного аналогового сигнала, возможную при приведенных параметрах.

в) Повторите пп. а и б для 8-уровневой кодировки РАМ.

3.13. Равновероятные двоичные импульсы в кодировке RZ когерентно обнаруживаются в гауссовом канале с Вт/Гц. Предполагается, что синхронизация идеальна, амплитуда принятых импульсов равна 100 мВ и вероятность ошибки ; найдите наибольшую скорость передачи данных, возможную в описанной системе.

3.14. Двоичные импульсы в кодировке NRZ передаются по кабелю, ослабляющему сигнал на 3 дБ (на пути от передатчика к приемнику). Эти импульсы когерентно обнаруживаются приемником, а скорость передачи данных равна 56 Кбит/с. Шум считать гауссовым с Вт/Гц. Чему равна минимальная мощность, необходимая для передачи с вероятностью ошибки ?

3.15. Покажите, что минимальная ширина полосы по Найквисту для случайной двоичной последовательности с биполярными импульсами идеальной формы равна ширине полосы шумового эквивалента. Подсказка: спектральная плотность мощности случайной последовательности биполярных импульсов определяется формулой (1.38), а ширина полосы шумового эквивалента дана в разделе 1.7.2.

3.16. Дана четырехуровневая последовательность символов сообщений в кодировке РАМ: {+1,+1,-1,+3,+1,+3}, где элементами алфавита являются числа {±1,±3}. Импульсы формируются фильтром с характеристикой типа корня из приподнятого косинуса; время поддержки каждого фильтрованного импульса составляет 6 периодов передачи символа, передаваемая последовательность - аналоговый сигнал, показанный на рис. 3.23, а. Отметим, что сигналы «размываются» вследствие межсимвольной интерференции, вносимой фильтром. Покажите, как можно реализовать набор N корреляторов для выполнения демодуляции принятой последовательности импульсов на согласованном фильтре, если число символов, переданных в течение длительности импульса, также равно N. (Подсказка: для набора корреляторов используйте опорные сигналы вида , где k = 0,...,5, а Т - время передачи символа.)

3.17. Желательным импульсным откликом системы является идеальный отклик , где - импульсная функция. Предполагается, что канал так вводит межсимвольную интерференцию, что общий импульсный отклик становится равным , где , а Т - длительность передачи символа. Выведите выражения для импульсного отклика фильтра, который реализует метод обращения в нуль незначащих коэффициентов и уменьшает последствия межсимвольной интерференции. Покажите, что этот фильтр подавляет межсимвольную интерференцию. Если полученное подавление окажется недостаточным, как можно будет модифицировать фильтр для более сильного подавления межсимвольной интерференции?

3.18. Результатом передачи одного импульса является принятая последовательность выборок (импульсный отклик) со значениями 0,1; 0,3; -0,2; 1,0; 0,4; -0,1; 0,1, где наиболее ранней является крайняя слева выборка. Значение 1,0 соответствует основному лепестку импульса, а другие - соседним выборкам. Спроектируйте трехотводный трансверсальный эквалайзер, подавляющий межсимвольную интерференцию в точках дискретизации по обе стороны основного лепестка. Вычислите значения выровненных импульсов в моменты времени k=0,±1,...,±3. Чему после выравнивания равен вклад наибольшей амплитуды в межсимвольную интерференцию и чему равна сумма амплитуд всех вкладов?

3.19. Повторите задачу 3.18, если импульсный отклик канала описывается следующими принятыми выборками: 0,01; 0,02; -0,03; 0,1; 1,0; 0,2: -0,1; 0,05; 0,02. С помощью компьютера найдите весовые коэффициенты девятиотводного трансверсального эквалайзера, удовлетворяющие критерию минимальности среднеквадратической ошибки. Вычислите значения импульсов на выходе эквалайзера в моменты времени k=0,±1,...,±8. Чему после выравнивания равен вклад наибольшей амплитуды в межсимвольную интерференцию и чему равна сумма амплитуд всех вкладов?

3.20. В данной главе отмечалось, что устройства обработки сигналов, такие как блоки перемножения и интегрирования, обычно работают с сигналами, имеющими размерность вольт. Таким образом, передаточная функция таких устройств должна выражаться в этих же единицах. Нарисуйте блочную диаграмму интегратора произведений, показывающую единицы сигналов в каждом проводнике и передаточную функцию устройства в каждом блоке. (Подсказка: см. раздел 3.2.5.1.)

Вопросы для самопроверки

3.1. При узкополосной передаче принятые сигналы уже имеют вид импульсов. Почему для восстановления импульсного сигнала требуется демодулятор (см. начало главы 3)?

3.2. Почему отношение , является естественным критерием качества систем цифровой связи (см. раздел 3.1.5)?

3.3. При представлении упорядоченных во времени событий какая дилемма может легко привести к путанице между самым старшим битом и самым младшим (см. раздел 3.2.3.1)?

3.4. Термин согласованный фильтр часто используется как синоним термина коррелятор. Как такое возможно при совершенно разных математических операциях, описывающих их работу (см. раздел 3.2.3.1)?

3.5. Опишите два точных способа сравнения различных кривых, описывающих зависимость вероятности появления ошибочного бита от отношения (см. раздел 3.2.5.3).

3.6. Существуют ли функции фильтров формирования импульсов (отличные от приподнятого косинуса), дающие нулевую межсимвольную интерференцию (см. раздел 3.3)?

3.7. До какой степени можно сжать полосу, не подвергаясь при этом межсимвольной интерференции (см. раздел 3.3.1.1)?

3.8. Ухудшение качества сигнала определяется двумя основными факторами: снижением отношения сигнал/шум и искажением, приводящим к не поддающейся улучшению вероятности возникновения ошибки. Чем отличаются эти факторы (см. раздел 3.3.2)?

3.9. Иногда увеличение отношения не останавливает ухудшение качества, вызванное межсимвольной интерференцией. Когда это происходит (см. раздел 3.3.2)?

3.10. Чем отличается эквалайзер, реализовывающий метод обращения в нуль незначащих коэффициентов, от эквалайзера, реализовывающего решение с минимальной среднеквадратической ошибкой (см. раздел 3.4.3.1)?



*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.