***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

Приложение А. Обзор анализа Фурье

А.2.3. Представление в виде интеграла Фурье

В системах связи часто встречаются непериодические сигналы, имеющие конечную энергию в конечном интервале и нулевую энергию за пределами этого интервала. Подобные сигналы удобно описывать, используя представление в виде интеграла Фурье, или просто Фурье-образ. Непериодический сигнал можно описать как периодический в предельном смысле. Рассмотрим, например, последовательность импульсов, показанную на рис. А.З. Если Т0стремится к бесконечности, последовательность импульсов превращается в отдельный импульс x(t), число спектральных линий стремится к бесконечности, а график спектра превращается в гладкий спектр частот Х(f). Для данного предельного случая можно определить пару интегральных преобразований Фурье.

                                                                                  (A.26)

и                                        

                                        ,                                       (A.27)

где f - частота, измеряемая в герцах. Данную пару преобразований можно использовать при описании частотно-временных соотношений непериодических сигналов.

С этого момента применение преобразования Фурье будем обозначать , а обратное преобразование — . Связь частотной и временной областей будем указывать с использованием знака .

Данная запись означает, что X(f) получается в результате применения преобразования Фурье к x(t), а х(t) - в результате применения обратного преобразования Фурье к X(f). В контексте систем связи x(t) — вещественная функция, a X(f) — комплексная функция, имеющая действительный и мнимый компоненты; в полярной форме спектр X(f) можно задать через его амплитудную и фазовую характеристики.

                                                                                     (А.28)

Свойства X(f), спектра непериодического сигнала, подобны свойствам периодического сигнала, представленным в формулах (А.17)-(А.23); т.е. если x(t) принимает вещественные значения,

                                                                                       (А.29)

                                                           ,                                            (А.30)

где X* — комплексно сопряженное X. Амплитудный спектр |X(f)| — это четная функция f, а фазовый спектр — нечетная функция f. Во многих случаях функция X(f) имеет или только действительную часть, или только мнимую, так что для ее описания достаточно одного графика.




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.