***** Google.Поиск по сайту:


Лекции по Теоретическим основам цифровой связи   

Приложение А. Обзор анализа Фурье

А.5.3. Свертка по частоте

Можно показать, что, вследствие симметрии пары преобразований Фурье (формулы (А.26) и (А.27)), умножение во временной области переходит в свертку в частотной области.

                                                                       (A.48)

Данный переход умножения в одной области в свертку в другой весьма удобен, поскольку, как правило, одну из этих операций выполнить значительно проще, чем другую. Например, ранее говорилось, что Хевисайд использовал свертку для нахождения тока на выходе линейной системы при подаче на вход произвольного переменного напряжения. Подобные методы часто включают вычисление (иногда трудоемкое) свертки входного сигнала с импульсной характеристикой системы. Поскольку, как видно из формулы (А.47), свертка во временной области переходит в умножение в частотной, для линейной системы входной сигнал можно просто умножить на передаточную функцию системы. Выходной сигнал затем получается путем применения к произведению обратного преобразования Фурье.

                                                                                 (А.49)

Вычислить выражение (А.49) часто намного проще, чем (А.45). В то же время, при определенных обстоятельствах, операция свертки настолько проста, что ее можно выполнить графически, просто внимательно изучив соответствующий график. Предположим, что некоторый произвольный сигнал необходимо умножить на косинусоиду фиксированной частоты, например несущую (если речь идет о модуляции). С помощью формулы (А.48) спектр произвольного сигнала можно свернуть со спектром косинусоиды, что, как показывается в следующем разделе, выполняется довольно просто.




***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.