Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->

Б.1. Теорема Байеса. Приложение Б. Основы теории принятия статистических решений. Теоретические основы цифровой связи

Лекции по Теоретическим основам цифровой связи   

Приложение Б. Основы теории принятия статистических решений

Б.1. Теорема Байеса

Математические основы проверки гипотез базируются на теореме Байеса, которая следует из определения отношения между условной вероятностью и совместной вероятностью случайных переменных A и В.

Р(А|В)Р(В) = Р(В|А)Р(А) = Р(А,В) (Б.1)

Теорема формулируется следующим образом.

Р(А|В)= (Б.2)

Теорема Байеса позволяет выводить условную вероятность Р(А|В) из условной вероятности Р(В|А).

Б. 1.1. Дискретная форма теоремы Байеса

Теорему Байеса можно записать в дискретной форме следующим образом.

i = 1, …, M; j = 1, … (Б.З) где

В приложениях связи si - это i-й класс сигнала из набора М классов, a zj - j-я выборка принятого сигнала. Уравнение (Б.З) можно рассматривать как описание эксперимента, в котором задействована принятая выборка и некоторые статистические знания о классах сигнала, к которым может принадлежать эта принятая выборка. До эксперимента вероятность появления i-гo класса сигнала P(si) называется априорной. В результате изучения конкретной принятой выборки zj из плотности условной вероятности P(zj|si) можно найти статистическую меру правдоподобия принадлежности zj к классу si. После эксперимента можно вычислить апостериорную вероятность P(si|zj), которую можно рассматривать как "уточнение" наших априорных знаний. Таким образом, к эксперименту мы приступаем, имея некоторые априорные знания, касающиеся вероятности состояния природы, а после изучения выборочного сигнала получаем апостериорную ("после свершения") вероятность. Параметр P(zj) — это вероятность принятой выборкиzj, во всем пространстве классов сигналов. Этот термин, P(zj), можно рассматривать как масштабный множитель, поскольку его значение одинаково для всех классов сигнала.

Пример Б.1. Использование (дискретной формы) теоремы Байеса

Имеется два ящика деталей. Ящик 1 содержит 1000 деталей, 10% из которых неисправны, а ящик 2 — 2000 деталей, из которых неисправными являются 5%. Если в результате случайного выбора ящика и детали из него деталь оказывается исправной, то чему равна вероятность того, что данная деталь взята из ящика 1?

Решение

P (ящик 1|ИД) = Р(ИД | ящик 1)/Р(ИД),

где ИД означает "исправная деталь".

Р(ИД) = Р(ИД | ящик 1)Р(ящик 1) + Р(ИД | ящик 2)Р(ящик 2) =

= (0,90)(0,5) + (0,95)(0,5) = 0,450 + 0,475 = 0,925

Р(ящик 1| ИД) == 0,486

До эксперимента априорные вероятности выбора ящика 1 или 2 равны. После получения исправной детали вычисления, проведенные согласно теореме Байеса, могут рассматриваться как способ "точной подстройки" нашего представления о том, что Р(ящик 1) = 0,5, в результате которой возникает апостериорная вероятность 0,486. Теорема Байеса — это просто формализация здравого смысла. Если была получена исправная деталь, то не кажется ли вам (интуитивно), что она с большей вероятностью могла быть взята из ящика с более высокой концентрацией исправных деталей и с меньшей - из ящика с меньшей концентрацией? Теорема Байеса уточняет априорную статистику выбора ящиков, порождая апостериорную статистику.

Пример Б.2. Применение теории принятия решений в теории игр

В ящике находится три монеты: обычная, с двумя орлами и с двумя решками. Вам предлагается случайным образом вытянуть одну монету, взглянуть на одну ее сторону и угадать, что находится на другой стороне. Какой стратегии лучше всего придерживаться?

Решение

Данную задачу можно рассматриваться как задачу обнаружения сигнала. Сигнал передается, но вследствие шума канала принятый сигнал не совсем отчетлив. Невозможность взглянуть на обратную сторону монеты равносильна приему сигнала, возмущенного шумом. Пусть Hi представляет гипотезу (i = П, О, Р), где индексы П, О и Р обозначают правильную монету, монету с двумя орлами и монету с двумя решками.

НП = О,Р (правильная монета)

НО = О,О (монета с двумя орлами)

НР= Р, Р (монета с двумя решками)

Пусть zj представляет принятую выборку (j=O,P), где zO - орел, аzO - решка. Пусть априорные вероятности гипотез равновероятны, так что Р(НП) = =Р(НО) = Р(НР) = 1/3. Используем теорему Байеса.

Нам необходимо вычислить вероятности всех гипотез для всех классов сигнала. Следовательно, нам нужно изучить результаты шести вычислений, после чего мы сможем установить оптимальную стратегию принятия решения. В каждом случае значение можно вычислить из условных вероятностей, изображенных на рис. Б.1. Пусть мы выбрали монету и увидели орел (zO), тогда вычисление трех апостериорных вероятностей дает следующие результаты.

P(HP / zO) = 0

Если принятой выборкой является решка (zP), вычисления дают следующее.

Рис. Б.1. Условная вероятность :

а) для правильной монеты; б) для монеты с двумя орлами;

в) для монеты с двумя решками

Таким образом, оптимальной стратегией принятия решения является следующая: если принят орел (zO), выбрать гипотезу НO (соответствующую монете с двумя орлами); если принята решка (zP), выбрать гипотезу HP (соответствующую монете с двумя решками).


Последние изменения страницы: 26.01.2018






© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки. Карта сайта

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru