Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->

Д.1.7. Устойчивость линейных систем. Приложение Д. S-область, z-область и цифровая фильтрация. Теоретические основы цифровой связи

Лекции по Теоретическим основам цифровой связи   

Приложение Д. S-область, z-область и цифровая фильтрация

Д.1.7. Устойчивость линейных систем

Рассмотрим однополюсное уравнение, соответствующее некоторой линейной системе.

(Д.19)

Импульсную характеристику данной системы можно (используя табл. Д.1) найти как обратное преобразование Лапласа выражения (Д.19); если , то импульсная характеристика выглядит следующим образом.

(Д.20)

Видим, что Re[] =; если >0, импульсная характеристика расходится с увеличением t (времени). В то же время, если <0, импульсная характеристика сходится с увеличением t. Член — это комплексная (осциллирующая) синусоида (см. раздел А.2.1). Используя формулировку, несколько отличающуюся от применяемых ранее, можно сказать, что система устойчива, если все полюса в s-области имеют отрицательную действительную часть.

Таким образом, если изобразить полюса на комплексной s-плоскости, все они должны располагаться в ее левой части. На рис. Д.2 показана область устойчивости и приведен пример устойчивой передаточной функции третьего порядка, все полюса которой попадают в левую часть комплексной s-плоскости, т.е. имеют отрицательную действительную часть. Отметим, что нули функции могут быть в левой или правой части s-плоскости, и это не влияет на устойчивость.

Нули в точках s = 0,1, 0,2-0,2i, 0,2+0,2i

Полюсы в точках s= -1, -0,5-0,5i, -0,5+0,5i

Рис. Д.2. Нули и полюса передаточной функции, изображенные в s-области

Если цепь имеет более одного полюса, передаточную функцию можно рассматривать как последовательность однополюсных функций.

(Д.21)

Для устойчивости все полюсы должны находиться в левой части комплексной плоскости. Отметим, что для реальных схем с вещественными коэффициентами Лапласа (т.е. в уравнении (Д. 16) а, В, С, D и Е — вещественные) полюсы и нули будут вещественными или будут разбиты на пары комплексно-сопряженных величин, как показано на рис. Д.2.

Для нашего предыдущего примера RС-цепи передаточная функция в формуле (Д.14) является безусловно устойчивой, поскольку — это всегда положительная величина, что, разумеется, является ожидаемым результатом. Неустойчивость в линейных системах возникает только при наличии в них обратной связи (рекурсии), например, при использовании фильтров с инвертирующими или неинвертирующими усилителями.






Добавить страницу в закладки ->
© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные и гуманитарные науки.

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru