Лекции по Теории передачи сигналов   

5. Основы теории помехоустойчивости

5.5. Вероятность ошибки при когерентном приеме многопозиционных сигналов

Работа приемника в многопозиционных системах сводится к различению m сигналов, соответствующих m позициям кода. Схему приемника можно представить себе состоящей из m каналов (ветвей), каждый из которых рассчитан на прием одного определенного сигнала. Одним из примеров многопозиционной системы является система с частотной манипуляцией, в которой сигналы представляют собой гармонические колебания различных частот. Приемник в этой системе содержит m фильтров, настроенных на частоты передаваемых Сигналов. С помощью этих фильтров и осуществляется разделение (различение) сигналов.

Пусть st), s2(t),..., sm(t) — сигналы, используемые для передачи, и w(t) — аддитивная помеха, воздействующая на приемник.  Принимаемые сигналы при этом будут x,x,..., xm. Если передавался сигнал s(t), то в первом фильтре будут сигнал и помеха ,а в остальных фильтрах — только помеха. Приемник сравнивает принятые сигналы и воспроизводит наибольший из них, т. е. выносит решение о том, что передан k-й сигнал, если . Поскольку мы предположили, что передавался сигнал s, это вероятность правильного решения будет равна:

а вероятность ошибки

Оптимальный когерентный приемник в m-позиционной системе представляет собой многоканальный коррелятор или систему из т согласованных фильтров. Структурная схема такого приемника аналогична схемам рис. 5.6 или рис. 5.7 для двоичных сигналов (разница лишь в числе каналов). В этом случае приемник в соответствии с условиями (5.33) вычисляет функцию взаимной корреляции принятого сигнала x(t) со всеми т опорными сигналами

                                                  (5.58)

и выдает решение о том, что был передан тот сигнал, для которого корреляция имеет наибольшее значение. Вероятность правильного решения (если передается сигнал s) будет равна:

                                                                                              (5.59)

Рис. 5.8. Оптимальный когерентный приемник многопозиционных сигналов

На рис. 5.8 приведена структурная схема когерентного приемника ,много-позиционных сигналов, построенная на базе корреляционной техники. В каждом канале этой схемы производятся синхронное детектирование принятых, сигналов, интегрирование и отсчет в конце каждого элемента сигнала. Полученные отсчеты поступают на схему сравнения (решающее устройство РУ). В результате сравнения выдается решение о том, какой из т сигналов был передан.

Определим вероятность ошибки при оптимальном когерентном приеме Ортогональных m-позиционных сигналов. Будем полагать, что все (возможные сигналы равновероятны и имеют одинаковую энергию Е. Для этого случая условия правильного приема сигнала s согласно (5.33) запишутся

Так как , и ,   то это неравенство принимает вид г

                                                                                                               (5.60)

Или

                                                                                                      (5.61)

            Рассмотрим  функцию ,   представляющую   собой нормальную случайную величину (помеху на выходе j-го канала) с дисперсией

Плотность вероятности величины |

Вероятность того, что помеха в j-м канале не превысит суммарного значения сигнала и помехи в первом канале, т. е. вероятность того, что , будет равна:

, где

,

Вероятность того, что помеха  во всех m— 1 каналах без сигнала не превысит суммарного значения сигнала и помехи в первом канале,

Интегрирование этого выражения по всем возможным значениям помехи | дает вероятность правильного приема

                                                               (5.62)

Вероятность ошибки при этом

                                                        (5.63)

В частном случае при m=2 выражение (5.63) преобразовывается в ф-лу (5.51) для двоичных систем

При m>2 интеграл в правой части (5.63) может быть вычислен приближенными методами. При относительно больших значениях отношения сигнала к помехе (q0>1) имеет место асимптотическое выражение

                                                                                         (5.64)

При неоптимальном когерентном приеме дискретных сигналов в схеме рис. 5.8 интегратор отсутствует. В этом случае после синхронного детектора ставится фильтр нижних частот и берется отсчет (стробирование) на выходе фильтра в середине посылки. Можно показать, что вероятность ошибки при неоптимальном когерентном приема определяется полученными выше выражениями (5.63) и (5.64), если в последних вместо q0 подставить



*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.