Лекции по Вычислительным системам, сетям и телекоммуникациям   

1. Базовые принципы организации вычислительных систем

1.6. Режимы работы вычислительной системы

Как уже отмечалось, вычислительная система обеспечивает большую гибкость работы, она способна настраиваться на любую задачу. Гибкость эта обусловлена прежде всего тем, что функции, выполняемые системой, определяются программой (программным обеспечением, software), которую выполняет процессор. Но гибкость микропроцессорной системы определяется не только этим. Настраиваться на задачу помогает еще и выбор режима работы системы, то есть режима обмена информацией по системной магистрали (шине).

Практически любая развитая вычислительная (микропроцессорная) система поддерживает три основных режима обмена по системной магистрали:

-       программный обмен информацией;

-       обмен с использованием прерываний (Interrupts);

-       обмен с использованием прямого доступа к памяти(ПДП, DMA – Direct Memory Access).

Программный обмен информацией является основным в любой микропроцессорной системе. Он предусмотрен всегда, без него невозможны другие режимы обмена. Все операции (циклы) обмена информацией в данном случае инициируются только процессором, все они выполняются строго в порядке, предписанном исполняемой программой. Процессор читает (выбирает) из памяти коды команд и исполняет их, читая данные из памяти или из устройства ввода/вывода, обрабатывая их, записывая данные в память или передавая их в устройство ввода/вывода.

Путь процессора по программе может быть линейным, циклическим, может содержать переходы (прыжки), но он всегда непрерывен и полностью находится под контролем процессора. Ни на какие внешние события, не связанные с программой, процессор не реагирует (рис. 1.8).

Программный обмен информацией.

Рисунок 1.8 – Программный обмен информацией

Обмен по прерываниям используется тогда, когда необходима реакция микропроцессорной системы на какое-то внешнее событие, на приход внешнего сигнала. В случае компьютера внешним событием может быть, например, нажатие на клавишу клавиатуры или приход по локальной сети пакета данных. Компьютер должен реагировать на это, соответственно, выводом символа на экран или же чтением и обработкой принятого по сети пакета.

В общем случае организовать реакцию на внешнее событие можно тремя различными путями:

-       с помощью постоянного программного контроля факта наступления события (так называемый метод опроса флага или polling);

-       с помощью прерывания, то есть насильственного перевода процессора с выполнения текущей программы на выполнение экстренно необходимой программы;

-       с помощью прямого доступа к памяти, то есть без участия процессора при его отключении от системной магистрали.

Первый случай с опросом флага реализуется в микропроцессорной системе постоянным чтением информации процессором из устройства ввода/вывода, связанного с тем внешним устройством, на поведение которого необходимо срочно реагировать.

Во втором случае в режиме прерывания процессор, получив запрос прерывания от внешнего устройства (часто называемый IRQ – Interrupt ReQuest), заканчивает выполнение текущей команды и переходит к программе обработки прерывания. Закончив выполнение программы обработки прерывания, он возвращается к прерванной программе с той точки, где его прервали (рис. 1.9).

Обслуживание прерывания.

Рисунок 1.9 – Обслуживание прерывания

Прямой доступ к памяти (ПДП, DMA) – это режим, принципиально отличающийся от двух ранее рассмотренных режимов тем, что обмен по системной шине идет без участия процессора. Внешнее устройство, требующее обслуживания, сигнализирует процессору, что режим ПДП необходим, в ответ на это процессор заканчивает выполнение текущей команды и отключается от всех шин, сигнализируя запросившему устройству, что обмен в режиме ПДП можно начинать. Операция ПДП сводится к пересылке информации из устройства ввода/вывода в память или же из памяти в устройство ввода/вывода. Когда пересылка информации будет закончена, процессор вновь возвращается к прерванной программе, продолжая ее с той точки, где его прервали (рис. 1.10). Это похоже на режим обслуживания прерываний, но в данном случае процессор не участвует в обмене. Контроллер ПДП может считаться специализированным процессором, который отличается тем, что сам не участвует в обмене, не принимает в себя информацию и не выдает ее (рис. 1.11).

Обслуживание ПДП.

Рисунок 1.10Обслуживание ПДП

Информационные потоки в режиме ПДП.

Рисунок 1.11 – Информационные потоки в режиме ПДП



*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.