Лекции по Сетям абонентского доступа   

2. Перспективные сети абонентского доступа

2.5.5. Поддержка функций мобильности сетью абонентского доступа

В этом параграфе, как и ранее, мы будем рассматривать “мобильность терминала” и “персональную мобильность”. Аспекты мобильности, в контексте монографии, изложены в параграфе 2.5.5 с точки зрения тех дополнительных функциональных возможностей, которые свойственны технологии WLL. Еще раз напомню, что принципов построения сотовых сетей мы касаться не будем. Основная причина, побудившая меня включить этот параграф в состав второй главы, заключается в следующем:

- затраты на модернизацию сети абонентского доступа, как правило, будут соизмеримы при использовании проводных и радиотехнических средств;

- основное потенциальное преимущество проводных средств (речь идет о технологиях FTTOpt) заключается в возможности существенного повышения полосы пропускания сети абонентского доступа;

- главным достоинством радиотехнических средств можно считать возможность поддержки функций мобильности;

- при выборе (Оператором, а в условиях конкуренции - и абонентами) средств абонентского доступа целесообразно определить уровень мобильности, который способно обеспечить то или иное решение, используемое в технологии WLL.

Итак в этом параграфе будут изложены функциональные возможности ряда сценариев, которые могут использоваться в технологии WLL. Эти соображения могут оказаться весьма полезными и при выборе средств для модернизации сети абонентского доступа (проводные или радиотехнические), и в процессе поиска оптимального решения, на основе которого будет воплощена технология WLL.

Мы будем рассматривать сценарии использования технологии WLL в самом общем виде. В частности, объединены методы доступа с временным (TDMA) и кодовым (CDMA) разделением каналов. Их характеристики определены различными стандартами, но с точки зрения структуры сети абонентского доступа оба метода (TDMA и CDMA) практически идентичны. Аналогично, на рисунке 2.66 объединены разные стандарты сотовых сетей - GSM, NMT, AMPS, DCS-1800. Это сделано по одной причине: применительно к структуре сети абонентского доступа важно лишь то, что использование оборудования любого типа (GSM, NMT, AMPS или DCS-1800) подразумевает сотовую структуру, присущую современной системе мобильной связи.

Рисунок 2.66 представляет четыре сценария, на основе которых могут создаваться сети абонентского доступа, обеспечивающие - в дополнение к заранее заданным требованиям стационарной телекоммуникационной системы - некоторые функции мобильности. Эти сценарии не охватывают все решения (так же, как и все возможные стандарты), на которых может остановить свой выбор Оператор. Четыре сценария, показанных на рисунке 2.66, позволяют нам рассмотреть наиболее характерные направления, по которым может развиваться сеть абонентского доступа. Для каждого возможного решения приведены чисто субъективные оценки уровня мобильности в сети абонентского доступа и степени сложности используемого оборудования, косвенно определяющего затраты Оператора. Чем темнее соответствующая стрелка, тем выше уровень мобильности или степень сложности.

Примеры сценариев, использующих технологию WLL

Рисунок 2.66

Начнем краткий анализ рисунка 2.66 с систем многостанционного (или множественного) доступа с временным и кодовым разделением каналов. В принципе, можно включить в этот перечень и систему с частотным разделением каналов - FDMA (Frequency Division Multiple Access), но она уже не считается перспективной. Системы TDMA и CDMA непрерывно совершенствуются.

В технической литературе последних лет активно обсуждают преимущества и недостатки этих методов разделения каналов. Мы не будем участвовать в этой полемике, так как с точки зрения сети абонентского доступа оба метода приводят к реализации одной и той же структуры. Мне показалось целесообразным привести некоторые характеристики какой-либо современной системы многостанционного доступа. Выбор пал на стандарт ETSI [72], который специфицирует систему TDMA в диапазоне частот от 1 до 3 ГГц.

Рассматриваемая система TDMA предназначена для использования как в ТФОП, так в других сетях электросвязи. Ее абоненты могут обмениваться речевой информацией и данными на скоростях, не превышающих 64 кбит/с. Кроме того, в [72] акцентируется внимание на возможности организации интерфейса ЦСИО со структурой доступа 2B+D. Предыдущими поколениями систем TDMA услуги ЦСИО не поддерживались.

Ресурсы пропускной способности, которыми располагает система, определяются формулой nx2048 кбит/с; величина “n” может принимать значения 1, 2 или 4, что подразумевает организацию 30, 60 или 120 ОЦК соответственно. Для создания таких пучков СЛ могут использоваться пять частотных планов в диапазоне от 1,5 ГГц до 2,6 ГГц. Основные характеристики системы TDMA, специфицированной в [72], заимствованы из рекомендаций МСЭ и стандартов ETSI.

Структура сети абонентского доступа, основанная на оборудовании TDMA или CDMA, приведена на рисунке 2.67 как вариант (а). Это решение предусматривает установку одной БС. Зона обслуживания БС, как правило, не будет совпадать с границами пристанционного участка той МС, которая будет обслуживать мобильные терминалы. На рисунке 2.67 показана ситуация, когда зона действия БС, помимо МС1, охватывает небольшой фрагмент пристанционного участка другой коммутационной станции. Таким образом, БС обслуживает некоторую территорию, представляющую собой один сот, в пределах которого микросоты не создаются.

Две модели сети абонентского доступа

Рисунок 2.67

Оборудование, используемое при реализации такого сценария, будет более простым, чем аппаратно-программные средства, ориентированные на классическую сотовую технологию [73]. Но мобильность терминала ограничена зоной обслуживания БС. Следует подчеркнуть, что иногда мобильность терминала будет ограничена еще меньшей территорией. В качестве примера можно привести ситуацию, характерную для сельской связи: двухпроводные АЛ подключаются к концентратору, который через системы TDMA или CDMA соединяется с МС. Учитывая все эти соображения, на рисунке 2.66 рассматриваемому варианту приписаны минимальные уровни мобильности и сложности.

Вариант (б) на рисунке 2.67 иллюстрирует принципы создания сотовой структуры в пределах пристанционного участка МС. Такое решение характерно для стандарта DECT, разработанного ETSI [74]. В нашем примере показаны пять БС, создающие микросоты [75]. Для того, чтобы подчеркнуть этот факт, каждая БС отмечена буквой “m” - сокращение от слов “Micro cell”. Для территории, обслуживаемой БС5, приведен пример организации четырех пикосот [75]. Соответствующие БС обозначены буквой “p” как сокращения слов “Pico cell”. Из этих рассуждений становится очевидным, что стандарт DECT основан на сотовых структурах.

Размеры макро-, микро- и пикосот определяются несколькими факторами: мощностью соответствующих БС, поверхностной плотностью размещения потенциальных абонентов и рядом других показателей. В технической литературе приводятся разные оценки для среднего радиуса сота каждого вида. Авторы уже упомянутой статьи [75] считают, что макросоты в настоящее время имеют радиус более 0,6 километра, микросоты рассчитаны на площадки радиусом от 60 до 600 метров, а для пикосот радиус обслуживания лежит в диапазоне от 6 до 60 метров. В других работах размеры пикосот определяются радиусом от 10 до 100 метров, а для микросот - от 0,1 до 1 километра; макросоты покрывают территорию радиусом от 1 до 35 километров.

Конечно, такая сеть абонентского доступа поддерживает весьма высокий уровень мобильности терминала, но она сложнее, чем структура, рассмотренная ранее (системы TDMA или CDMA). Это отражено на рисунке 2.66 при окраске стрелок, характеризующих уровни мобильности и сложности, присущие системе DECT и подобным стандартам.

Спецификации DECT [74] содержат подробную информацию, касающуюся различных аспектов этой системы беспроводного доступа. В контексте раздела 2.5 мне представляется целесообразным привести ряд сведений, прямо или косвенно определяющих сетевые аспекты применения стандарта DECT. Приведенная ниже информация заимствована из уже упомянутого стандарта ETSI [74] и отчета [76], определившего общие принципы реализации DECT.

Разработку стандарта DECT стимулировала ситуация, сложившаяся на телекоммуникационном рынке развитых европейских стран. В [76] перечислены пять основных систем, используемых в качестве технологий WLL. Все эти системы основаны на разных принципах, а их частотные планы не были согласованы. Назрела необходимость унификации радиотехнических средств, используемых в национальных сетях стран Европы, что было выгодно всем участникам телекоммуникационного рынка.

Преимущества DECT заключаются, по мнению разработчиков этого стандарта, в следующем:

- эффективное решение многих проблем Оператора за счет использования унифицированных технических средств;

- возможность организации беспроводной связи на территории с очень высокой поверхностной плотностью размещения абонентов, на два порядка (и даже более) превышающую величины, свойственные сотовым сетям;

- гибкая адаптация системы к различным требованиям, возникающим у абонентов;

- возможность введения новых услуг и/или организации альтернативной сети абонентского доступа.

Для стандарта DECT выделен спектр частот в диапазоне 1880 МГц - 1900 МГц; число несущих равно 10. Максимальная мощность передачи составляет 250 мВт. Передача речи осуществляется со скоростью 32 кбит/с в соответствии с принципами, изложенными в рекомендации МСЭ G.726. Для пользователей ЦСИО выделяются ресурсы, необходимые для интерфейса со структурой доступа 2B+D.

Идеология DECT может использоваться во многих видах оборудования электросвязи. Она может эффективно применяться и в простых бесшнуровых (cordless) терминалах, и в более сложных системах распределения информации, примером которых могут служить беспроводные УПАТС (Wireless PABX).

Вернемся к рисунку 2.66, чтобы кратко рассмотреть два следующих сценария. Использование какого-либо стандарта сотовой сети можно считать очевидным решением. Уровень мобильности для третьего сценария можно считать весьма высоким. Для включения стационарных терминалов такое решение из-за высоких затрат, как правило, не будет оптимальным. На рисунке 2.66 это обстоятельство отмечено более темным, чем для предшествующих сценариев, заполнением соответствующей стрелки.

Четвертый сценарий, поддерживающий технологию WLL, связан с уже упоминавшимися в первой главе монографии концепциями IMT-2000 [77] и UMTS [78], предложенными МСЭ и ETSI соответственно. Различия между этими двумя концепциями не считаются существенными, а для рассматриваемых в этом параграфе вопросов они совершенно не принципиальны. Это обстоятельство позволяет мне очень кратко изложить главные особенности четвертого сценария на примере концепции UMTS.

Данная концепция посвящена основным принципам построения третьего поколения сотовых сетей связи с подвижными объектами. Можно говорить о том, что концепция UMTS предусматривает ряд очень существенных новшеств, из которых - в контексте вопросов, изложенных в монографии, - целесообразно выделить три аспекта. Во-первых, сама идея мобильной связи претерпевает радикальные изменения (заметим, что в UMTS используются не только сотовые технологии). Во-вторых, появляется возможность поддержки “персональной мобильности” в полном смысле этого словосочетания. В-третьих, создаются условия максимальной интеграции стационарных и мобильных сетей связи (к этому вопросу мы вернемся в следующем параграфе).

В UMTS должна поддерживаться глобальная мобильность терминала (Global terminal mobility), что подразумевает использование не только наземных, но спутниковых систем связи. Качество передачи речевой и иной информации должно соответствовать тому уровню, который пока характерен только для стационарных сетей электросвязи. Для построения UMTS выделены частоты в диапазонах 1885 - 2025 МГц и 2110 - 2200 МГц. В этих же диапазонах выделяются частоты для системы спутниковой связи, используемой в UMTS.

UMTS, на начальном этапе своего создания, будет поддерживать широкий спектр телекоммуникационных услуг, ориентированных на скорость обмена информацией вплоть до 2,048 Мбит/с. В перспективе станут доступными и более высокие скорости. Существенные изменения ожидаются в отношении функциональных возможностей терминалов. Будут уменьшаться габариты терминалов и их масса. Весьма важно, чтобы мобильные терминалы потребляли минимум энергии.

Принципы “Персональной мобильности” в UMTS определяются, в основном, концепцией УПС [4, 58]. Безусловно, что UMTS (равно как и IMT-2000) обеспечивает самый высокий уровень мобильности по сравнению со всеми другими системными решениями, рассмотренными ранее. Также очевидно, что практическая реализация UMTS или IMT-2000 на порядок сложнее, чем построение предшествующих поколений телекоммуникационного оборудования. Поэтому обе стрелки на рисунке 2.66, относящиеся к четвертому сценарию, имеют самую интенсивную окраску.



*****

© 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.