Вы нашли то, что искали?
Главная Разделы

Добавить страницу в закладки ->

6. Открытый интерфейс V5. Структура городской телефонной сети

Структура городской телефонной сети

6. Открытый интерфейс V5

6.1. Три источника и три составные части сети доступа

6.2. Модель V5: услуги и порты пользователя

6.3. Протоколы и пропускная способность

6.4. Физический уровень протокола V5

6.5. Уровень LAPV5

6.6. Форматы сообщений уровня 3

6.7. Мультиплексирование портов ISDN



6.1. Три источника и три составные части сети доступа

Первыми шагами на пути формирования сети доступа были удаленные абонентские мультиплексоры и системы уплотнения абонентских линий, о чем уже упоминалось в предыдущих главах. В настоящее время традиционная технологическая база сети абонентского доступа активно изменяется. Дальнейший прогресс в этом направлении связывается с беспроводным абонентским доступом (WLL), с оптоволоконными абонентскими линиями и со всё усложняющимися системами мультиплексирования и передачи информации между пользователями и коммутационным оборудованием сети связи. Изменения происходят и в потребностях пользователей (термин «пользователь», соответствующий современному телекоммуникационному рынку, постепенно, но весьма прочно заменил в этом томе традиционный термин «абонент» - пережиток времен телефонной монополии): возрастает их заинтересованность в новых телекоммуникационных услугах. Почти столетняя история постепенного эволюционного развития сети абонентского доступа, удовлетворявшейся полосой 3,1 кГц и базировавшейся на металлической проволоке, вступила в фазу революционных преобразований, связанных с новой технологией, новыми принципами, новыми методами [72] и новыми характеристиками спроса на услуги связи.

Эти революционные преобразования обусловили продолжение ассоциативной цепочки, приведшей к названию данного параграфа. Действительно имеют место следующие три источника современных требований к сети доступа, соответствующие трем видам услуг, запрашиваемых пользователем:

— передача речи (телефонная связь, аудиоинформация, справочные услуги, речевая почта и др.);

— передача данных (электронная почта, Интернет, факсимильные сообщения, электронные платежи и др.);

—      передача видеоинформации (видео по запросу, телеконференции и др.).

Для каждого вида услуг сегодня, как правило, существует своя сеть абонентских линий и используются свои передающие среды:

двужильный медный кабель для аналоговых абонентских линий, кабельная коаксиальная сеть для кабельного телевидения, волоконно-оптические линии связи, оборудование беспроводного абонентского доступа и т.д. Говоря о сети абонентского доступа, можно выделить следующие три составные части этой сети:

- металлический кабель (витая пара, коаксиальный кабель и др.);

-волоконно-оптический кабель;

- беспроводный абонентский доступ (WLL Wireless Local Loop).

Более строгие рассуждения о сети доступа читатель сможет найти в монографии Н. А. Соколова «Сети абонентского доступа. Принципы построения» [49], а здесь уместно отметить только некоторые моменты.

В недавнем прошлом внутренние интерфейсы между выносными абонентскими концентраторами и модулями подключения цифровых линий коммутационного узла не подлежали международной стандартизации. Практически во всех установленных до сегодняшнего дня цифровых АТС для этих интерфейсов используются цифровые тракты 2048 Кбит/с и собственные «внутрифирменные» протоколы. Очевидным недостатком такого подхода является ограничение свободы выбора у операторов при увеличении емкости АТС и установке дополнительного абонентского оборудования. В последнее время в связи с расширением номенклатуры средств сети абонентского доступа и, в частности, с распространением оборудования WLL, возросла потребность в таком интерфейсе, который позволил бы совмещать в одной сети оборудование разных производителей.

Именно для этих целей и был создан универсальный интерфейс V5, являющийся предметом рассмотрения этой и двух следующих глав. Как показано на рис. 6.1, наряду с интерфейсом V5 и включением абонентских терминалов в АТС по двухпроводным абонентским линиям иногда возможно использование и других протоколов, например, в качестве временного решения. Такими протоколами в различных ситуациях установки оборудования сети доступа (например, WLL) могут являться системы межстанционной сигнализации по двум выделенным сигнальным каналам, система общеканальной сигнализации №7 и другие, описанные в первом томе данной монографии. В некоторых случаях возможно использование протокола DSS-1, рассмотренного в главах 3 и 4 данного тома и ориентированного на организацию первичного доступа ISDN при включении УАТС в цифровые АТС сети общего пользования Однако все эти варианты не могут рассматриваться как системные решения задачи подключения оборудования сети абонентского доступа к коммутационным станциям. Системное решение должно опираться на универсальный стандартизированный интерфейс.

Рис. 6.1. Варианты включения оборудования доступа (например, WLL) в коммутационные узлы телефонной сети общего пользования

Местоположение этого универсального интерфейса, поддерживающего различные виды абонентского доступа, согласно рекомендации 1.411, определено в опорной точке V, которая находится на границе между станционным окончанием ЕТ и линией цифрового доступа.

Возможные варианты доступа в точке V представлены на рис. 6.2, выполненном на базе рекомендации Q.512. Сама эта рекомендация скрупулезно проанализирована в приложении 4 монографии [49], а подробные характеристики интерфейсов V содержатся в соответствующих рекомендациях ITU-T и стандартах ETSI. Здесь же отметим только, что интерфейс VI предназначен для подключения к станционному окончанию АТС пользователей ISDN с базовым доступом 2B+D, а интерфейсы V2, V3, V4 и V5 на физическом уровне представляют собой цифровые тракты 2048 Кбит/с, соответствующие рекомендациям G 703, G.704.

Рис. 6.2. Интерфейсы и опорные точки V

Различаются эти интерфейсы используемыми системами сигнализации. Так, для V2 конкретный протокол сигнализации не определяется; подразумевается, что этот протокол будет специфическим для каждого конкретного типа цифровых АТС. Интерфейс V3 ориентирован на подключение к станционному окончанию АТС пользователей ISDN с первичным доступом 30B+D, а спецификации V4 вообще исключены из последних версий рекомендации Q.512 в связи с появлением интерфейса V5. Именно этот последний интерфейс произвел те революционные преобразования в организации взаимодействия оборудования сети доступа и узлов коммутации, о которых упоминалось в начале главы.

Разработка универсального протокола для интерфейса V5 была начата в 1991 году Европейским институтом стандартизации ETSI. Первые спецификации V5 были изданы в 1993 году, а в 1995 году ITU-T утвердил рекомендации для V5.1 (без концентрации) и V5.2 (с концентрацией). Национальная часть протокола определяется для каждой страны в отдельности. Российские национальные спецификации утверждены Госкомсвязи и информатизации в 1997г.

Интерфейс V5.1 позволяет подключить к АТС по цифровому тракту 2048 Кбит/с до 30 аналоговых абонентских линий или В-каналов без концентрации (рис.6.1). Сигнализация осуществляется по общему каналу.

Интерфейс V5.2 ориентирован на группу до 16 трактов 2048 Кбит/с и поддерживает концентрацию, например, с коэффициентом 8. В каждом тракте может быть предусмотрено несколько каналов сигнализации.

В следующем параграфе будут подробнее рассмотрены различия между V5.1 и V5.2. Тем не менее, эта и следующая главы посвящены общим для обоих протоколов вопросам, и лишь в последней, связанной с V5 главе 8 рассмотрены специфические процедуры V5.2.



6.2. Модель V5: услуги и порты пользователя

Как уже было упомянуто в предыдущем параграфе, интерфейс V5 не ограничивается какой-либо определенной технологией доступа или средой, хотя в значительной степени его разработку предопределило развертывание оптических и беспроводных сетей доступа.

С позиций интерфейса V5 рассмотренные в предыдущем параграфе три источника и три составные части технологии доступа оказывается возможным объединить в некий «черный ящик» (рис. 6.3), называемый сетью доступа (AN - access network). Другой «черный ящик» на рис. 6.3 представляет оконечную АТС. Между этими двумя «ящиками» расположен интерфейс V5.

Рис. 6.3. Функциональная модель доступа через интерфейс V5

Для переноса через интерфейс пользовательской, сигнальной и служебной информации в нем имеются информационные системы передачи 2048 Кбит/с, которые впоследствии будут именоваться трактами 2048 Кбит/с.

Тракты обеспечивают связь между оконечной АТС и пользовательскими портами, как входящими в сеть доступа, так и находящимися вне этой сети. Пользователськие порты, связанные с интерфейсом V5, поддерживают услуги разных типов, причем одни и те же физические порты могут поддерживать разные услуги. Имеется четыре общих типа услуг, которые может поддерживать пользовательский порт, связанный с интерфейсом V5, причем одновременно могут поддерживаться не более трех типов услуг.

Первые два типа услуг относятся к обслуживанию по запросу (on-demand services), когда соединение устанавливается АТС при поступлении очередного телефонного вызова или вызова ISDN.

Телефонный вызов может инициироваться абонентом ТфОП, имеющим аппарат с декадным набором номера или с DTMF, пользующимся или не пользующимся дополнительными услугами. Телефонный вызов может также инициироваться включенной в ТфОП малой АТС, тоже оборудованной средствами декадного набора номера или DTMF и пользующейся или не пользующейся дополнительными услугами. Все это подробно обсуждалось в первой главе данного тома.

Вызов ISDN может поступить от сетевого окончания NT, являющегося элементом сети доступа, или от других элементов, соответствующих рекомендациям G.960 и G.961. При этом не накладываются никакие ограничения на использование В-каналов и каких-либо дополнительных услуг, а также на передачу пакетных данных в В- и D-каналах.

Другие два типа услуг — это услуги арендованной линии, когда соединение не устанавливается для каждого вызова отдельно, а задается средствами управления конфигурацией сети.

Первый из этих двух типов услуг — услуги постоянной (закрепленной) арендованной линии (permanent leased line). Эти услуги реализуются сетью арендованных линий, фактически независимых от АТС и, следовательно, от интерфейса V5.

Второй тип услуги арендованной линии — услуги полупостоянной арендованной линии (semi-permanent leased line), когда нагрузка маршрутизируется через АТС. Интерфейс V5 позволяет использовать для организации полупостоянной арендованной линии либо один или два В-канала базового доступа ISDN, либо аналоговую или цифровую линию без выделенного канала сигнализации.

Пользовательские порты, которые связаны с интерфейсом V5 и поддерживают обслуживание по запросу, делятся на пользовательские порты ТфОП и пользовательские порты ISDN. Последние могут поддерживать также и услуги арендованной линии.

Пользовательские порты, которые связаны с интерфейсом V5 и не поддерживают услуги по запросу, классифицируются как арендованные порты. Они должны поддерживать либо услугу полупостоянной арендованной линии, либо комбинацию услуг полупостоянной и постоянной арендованной линии, поскольку арендованный порт, который поддерживает только услугу закрепленной арендованной линии, вообще не подключается к станции через интерфейс V5. Арендованные порты, которые требуют только одного несущего канала в интерфейсе V5, обслуживаются так же, как порты ТфОП. Арендованные порты, которые требуют более одного несущего канала, обслуживаются как порты ISDN.

Как упоминалось в предыдущем параграфе, интерфейс V5 имеет две разновидности: V5.1 и V5.2 (табл. 6.2). Интерфейс V5.1 содержит один тракт 2048 Кбит/с. Интерфейс V5.2 содержит несколько таких трактов (до шестнадцати). В дополнение к функциям интерфейса V5.1, интерфейс V5.2 предусматривает концентрацию нагрузки и динамическое назначение канальных интервалов. Тракты 2048 Кбит/с обоих интерфейсов разделены (как обычно) на 32 канальных интервала, при этом КИО используется для цикловой синхронизации (см. рис.3.1 в главе 3 первого тома). Один интерфейс V5.1 может поддерживать до 30 портов ТфОП (или до 15 портов базового доступа ISDN), в то время как один интерфейс V5.2 может поддерживать до двух тысяч портов ТфОП (или до 1000 портов базового доступа ISDN). В обоих случаях порты ТфОП и порты ISDN могут использовать один и тот же тракт интерфейса V5.



6.3. Протоколы и пропускная способность

В интерфейсе V5 действует совокупность различных протоколов Это - протокол управления базовыми соединениями ISDN, рассматриваемый в главе 7 протокол управления соединениями ТфОП и рассматриваемые в главе 8 служебные протоколы (управления, управления трактами интерфейса, назначения несущих каналов и защиты). Протокол ТфОП и протокол управления действуют в обоих интерфейсах V5.1 и V5 2, а остальные служебные протоколы - только в интерфейсе V5 2 (рис.6.4).

В рекомендации Q 921 для ISDN были определены три типа данных, передаваемых по D-каналу, которые соответствуют различным адресам уровня 2 интерфейса V5. Информация D-канала пользовательских портов ISDN включает в себя сигнальную информацию управления соединениями (s-тип), данные трансляции кадров от пользователя к пользователю (f-тип) и передаваемые от пользователя к пользователю пакетные данные (р-тип). Данные р- и f-типов обычно маршрутизируются к коммутаторам пакетов и трансляции кадров.

Рис. 6.4. Архитектура протокола V5.2

Выполнение каждого из перечисленных протоколов сопровождается передачей через интерфейс V5 данных соответствующего типа. Таким образом, через интерфейс V5 2 передаются данные:

• р-типа - данные D-канала ISDN с SAPI=16;

• f-типа - данные D-канала ISDN с SAPI= 32-64;

• Ds-типа - сигнальная информация D-канала ISDN (SAPI не равен ни одному из приведенных выше);

• сигнальная информация ТфОП;

• информация служебного протокола управления;

• информация служебного протокола управления трактами;

• информация служебного протокола назначения несущих каналов (ВСС-протокола);

• информация служебного протокола резервирования

Ресурс, выделяемый в интерфейсе V5 для передачи данных одного типа, называется С-путем. Группа из одного или нескольких С-путей в интерфейсе V5 2, таких, что каждый из них отличается от остальных С-путей в этой группе типом передаваемых данных и что среди них отсутствует С-путь, передающий информацию протокола резервирования, составляет логический С-канал. Канал 64 Кбит/с в тракте интерфейса V5, предназначенный для передачи данных логического С-канала, называется физическим С-каналом.

С-пути для передачи информации служебных протоколов управления, назначения В-каналов, управления трактами и резервирования всегда должны размещаться в канальном интервале 16 первого тракта. С-пути, по которым передаются данные р-, f- и Ds-типов от пользовательского порта ISDN, могут размещаться в одном логическом С-канале или разделяться для передачи по разным С-каналам. При этом данные р-, f- и Ds-типов от одного пользовательского порта не должны передаваться по разным логическим С-каналам. Каждый пользовательский порт ISDN для данных каждого из трех типов всегда использует один и тот же канальный интервал V5, но может использовать разные канальные интервалы V5 для данных различных типов. Для данных одного типа разные пользовательские порты ISDN могут использовать разные С-пути в разных канальных интервалах V5. Протокол управления соединениями ТфОП также использует только один канальный интервал, но ни он, ни С-пути с данными D-канала ISDN не могут занимать канальный интервал, используемый служебными протоколами, для увеличения ресурса, требующегося протоколу управления базовыми соединениями, когда возрастает количество пользовательских портов или нагрузка D-канала ISDN. Маршрутизация данных р- и f- типов может также осуществляться в сети доступа функцией, предоставляющей услугу арендованной линии.

В интерфейсе V5.1 имеется только один С-путь для данных сигнализации ISDN (Cs-путь) с соответствующим уникальным канальным интервалом, который может быть разделен или не разделен с другими протоколами или с другими типами С-путей ISDN, каковыми могут быть Ср-пути ISDN (пакетные данные) и Cf-пути ISDN (трансляция кадров), использующие до трех канальных интервалов. Если для всех С-путей используется только один канальный интервал, это должен быть КИ16, поскольку в нем размещается С-путь с данными протокола управления. Если для С-путей используется два канальных интервала, это должны быть КИ16 и КИ15. Подобным же образом в обоих канальных интервалах могут находиться р-пути ISDN. Протокол ТфОП и s-путь ISDN могут каждый использовать любой канальный интервал: КИ16 или КИ15. Если для С-путей используется три канальных интервала, это должны быть КИ16, КИ15 и КИ31. Протокол управления опять-таки должен использовать КИ 16. Поскольку протокол ТфОП может использовать только один канальный интервал, то, если используются три канальных интервала, должны также присутствовать С-пути ISDN. В любом из этих канальных интервалов могут быть f-пути и р-пути ISDN. Протокол ТфОП и Cs-путь ISDN могут использовать любой канальный интервал, КИ16, КИ15 или КИЗ1. Несколько подробнее это будет рассмотрено в следующем параграфе.

В интерфейсе V5.2 действуют и другие служебные протоколы, которые используют тот же канальный интервал, что и протокол служебного управления. И хотя в интерфейсе V5.2 предусмотрены резервные канальные интервалы, наличие других служебных протоколов может оказывать косвенное влияние на размещение С-путей по канальным интервалам, потому что эти протоколы уменьшают резервную емкость канальных интервалов, используемых протоколом управления.

В интерфейсе V5.2 предусмотрена возможность резервирования логических С-каналов, по которым между сетью доступа и оконечной станцией передается сигнальная информация и данные служебных протоколов. Протокол защиты позволяет интерфейсу V5.2 при отказе одного из трактов интерфейса автоматически переключаться на другой тракт, при условии, естественно, что этот интерфейс содержит по меньшей мере два таких тракта. Протокол выполняется для конкретных логических С-каналов вместе с составляющими их С-путями. Резервируемые С-каналы могут иметь группу защиты 1 или 2.

Группа защиты 1 обслуживает основной логический С-канал служебных протоколов, используя канальные интервалы 16 как первого, так и второго трактов в интерфейсе V5.2. Для формирования этого логического канала в интерфейсе выделено два физических С-канала. Первоначально основной логический С-канал использует КИ 16 первого тракта, а протокол защиты выполняет мониторинг КИ16 как в первом, так и во втором тракте. Если качество функционирования первого тракта ухудшается, основной логический С-канал переключается на КИ16 второго тракта. Возможно, что при переключении несколько сообщений будут повреждены, но эти испорченные сообщения затем будут обнаружены и переданы заново. Логические С-каналы, не являющиеся основными, можно резервировать, введя их в группу защиты 2.

Группа защиты 2 отличается от группы защиты 1 тем, что она не предусматривает резервного канального интервала для каждого логического С-канала, а данные протокола резервирования, соответственно, по резервным канальным интервалам не передаются.

В группу зашиты 2 можно ввести любое количество активных канальных интервалов, причем для них выделяются не более трех резервных канальных интервалов, на которые будут переключаться логические С-каналы в случае отказа первоначально использовавшегося канального интервала. Как и в случае группы защиты 1, все сообщения, поврежденные в результате переключения, передаются повторно в рамках обычного процесса исправления ошибок.

Протокол у правления трактами в интерфейсе V5.2 позволяет идентифицировать тракты, блокировать и разблокировать их. Блокировка и разблокировка трактов нужны для обеспечения нормального обслуживания потоков нагрузки в интерфейсе и наращивания его пропускной способности по мере роста нагрузки. Сходные функции в отношении блокировки и разблокировки пользовательских портов предусматривает протокол управления, выполняющий также функции контроля и техобслуживания этих портов.

Протокол назначения несущих каналов (ВСС - bearerchannel connection) работаете несущими канальными интервалами интерфейса V5, использующимися для передачи со скоростью 64 Кбит/с информации пользователей между пользовательскими портами и АТС. Эти канальные интервалы назначаются для пользовательских портов таким образом, чтобы и сеть доступа, и станция знали, какие именно канальные интервалы используются для конкретного пользовательского порта. В интерфейсе V5.1 предусматривается статическое, не меняющееся от вызова к вызову назначение несущих канальных интервалов; оно может быть изменено средствами протокола служебного управления. В интерфейсе V5.2 назначение несущих канальных интервалов для пользовательских портов—динамическое, производящееся для каждого вызова. Отображение несущих каналов пользовательских портов на несущие канальные интервалы интерфейса V5.2 и обеспечивается протоколом ВСС. Динамическое назначение несущих канальных интервалов в интерфейсе V5.2 также обеспечивает концентрацию информационной нагрузки. С учетом того, что обычно применяется коэффициент концентрации 8, одним интерфейсом V5.2, имеющим 16 трактов, можно обслуживать сеть доступа примерно на 4000 портов ТфОП. Один интерфейс V5.1 может поддерживать только до 30 портов ТфОП, поскольку по меньшей мере один канальный интервал тракта требуется для сигнализации и один—для цикловой синхронизации.



6.4. Физический уровень протокола V5

Как уже отмечалось в этой главе, интерфейс V5.1 содержит один физический тракт 2048 Кбит/с, а интерфейс V5.2, в зависимости от нагрузки, может содержать от одного до шестнадцати таких трактов. Электрические параметры каждого тракта 2048 Кбит/с интерфейса V5 должны соответствовать рекомендациям ITU-T G.703, G.704 и стандарту ETSI ETS 300 166. В стандарте ETS 300 166, в частности, представлены два альтернативных типа физической среды: витая пара и коаксиальный кабель. Но более существенны функциональные и процедурные требования к каждому тракту, которые определены в стандарте ETS 300 324-1.

Так как в интерфейсе V5.2 имеется несколько трактов 2048 Кбит/с, должна существовать возможность верификации идентификатора тракта (ID-verification) и возможность блокировки отдельных трактов. Процедуры, реализующие эти функции, выполняются протоколом управления трактами, упомянутым в предыдущем параграфе и подробно рассматриваемым в главе 8. Верификация идентификатора тракта - это симметричная процедура, которая может применяться на уровне 1 с обеих сторон интерфейса V5.2 по расписанию или по запросу от интерфейса Q3.

Необходимо отметить, что другая важная функция управления трактами интерфейса V5.2 - блокировка конкретного тракта - является асимметричной. Сторона сети доступа может запрашивать блокировку тракта, но решение о блокировке принимает АТС как ответственная за обслуживание. Именно эта АТС разрушает все соединения, установленные по запросу с использованием несущих каналов данного тракта, и в течение определенного времени переустанавливает полупостоянные и закрепленные соединения, используя для них несущие каналы в других трактах того же V5.2 интерфейса. Тогда же оконечная АТС применяет протокол резервирования для перемещения поврежденных логических С-каналов, если такая процедура предусмотрена и ее выполнение оказывается возможным. В связи с этим следует еще раз подчеркнуть различие между логическими С-каналами и физическими канальными интервалами (КИ) в тех трактах, в которых эти С-каналы размещаются. Это тем более важно с учетом того, что размещение логических С-каналов в интерфейсе V5.2 может изменяться путем переключения на резерв.

Физический тракт 2048 Кбит/с интерфейса V5 содержит 32 канальных интервала (см. главу 3 первого тома). Канальный интервал 0 используется для синхронизации, а остальные 31 КИ используются либо как несущие канальные интервалы, либо как канальные интервалы сигнализации Вполне естественно использовать КИ16 как канальный интервал сигнализации; именно так КИ16 используется в других стандартах, рассмотренных, например, в главах 3, 7, 9, 10 первого тома.

Если требуется иметь несколько С-каналов, можно использовать для этого канальные интервалы 16 других трактов интерфейса, а если КИ16 во всех трактах оказываются задействованными для сигнализации (например, если пользователи ISDN интенсивно используют передачу информации по D-каналу, а количество трактов в интерфейсе невелико), то используются также канальные интервалы 15, а затем - и канальные интервалы 31 (рис. 6 5). Спецификация интерфейса V5 рекомендует использовать для С-каналов именно эти КИ, но не требует этого в обязательном порядке, поскольку излишне строгое соблюдение такой рекомендации может вызвать проблемы при дальнейшем использовании интерфейса или ограничить надежность с точки зрения возможностей переключения С-каналов на резерв Но канальный интервал 16 каждого тракта используется в первую очередь, так как с учетом использования канального интервала КИ0 для синхронизации в тракте остается четное количество несущих канальных интервалов

Как показано на рис 6.5, служебным протоколам интерфейса V5 первоначально отводится канальный интервал КИ16 первого тракта 2048 Кбит/с и нтерфейсаУ5. Для интерфейсов V5.1 это единственный тракт и единственным служебным протоколом является протокол управления Для интерфейсов V5.2 канальный интервал 16 первого тракта обслуживает также протокол ВСС и протокол управления трактами Протоколу защиты V5.2 отводится КИ16 как первого, так и второго трактов интерфейса, чтобы обеспечить работу протокола при отказе одного тракта.

Количество шагов на рис. 6.5 соответствует необходимому числу физических канальных интервалов для передачи информации протоколов. Когда осуществляется переключение на резерв, для поддержки логических С-каналов также требуются дополнительные физические канальные интервалы. Все рассматриваемые в контексте V5 протоколы ограничены рамками сети доступа. Исключение составляет протокол управления соединениями ISDN, сообщения которого генерируются и принимаются в терминалах ISDN (главы 3 и 4 данного тома), что необходимо учитывать при выделении канальных интервалов для этого протокола. В идеальном случае для передачи информации одного протокола (за исключением протокола сигнализации ISDN) должно использоваться не более одного канального интервала. Если это не удается, то появляется необходимость в координации сообщений, передаваемых в разных канальных интервалах. Для сигнализации ISDN это проблемы не составляет, поскольку трансляция кадров позволяет различать эти сообщения по их адресам уровня 2. Протокол защиты отличается тем, что для него из соображений надежности желательно отводить более одного канального интервала. Однако благодаря тому, что разные протоколы могут различаться на уровнях кадров и сообщений, один и тот же канальный интервал может использоваться несколькими протоколами.

Рис. 6.5. Последовательность использования канальных интервалов



6.5. Уровень LAPV5

Как уже неоднократно отмечалось при рассмотрении в этой книге других телекоммуникационных протоколов, задачи второго уровня связаны с организацией надежной передачи сообщений уровня 3, не зависящей от физической среды, использование которой обеспечивают функции уровня 1. Это достигается путем адресации и нумерации сообщений второго уровня (т.е. кадров), вычисления и добавления в конец каждого такого сообщения контрольной комбинации для обнаружения ошибок с последующей передачей запроса на повторную передачу начиная с последнего правильно принятого сообщения и др.

Спецификации и процедуры протокола LAPV5 базируются на рассмотренном в параграфе 3.3 данного тома протоколе LAPD и дополняют его возможностями мультиплексирования информации от различных источников. Как будет показано в конце данной главы, содержание сообщений управления соединениями ISDN в сети доступа интерпретировать не требуется. С другой стороны, сообщения ТфОП сеть доступа должна отображать в ориентированных на порты пользователей ТфОП сигналах: замыкание шлейфа, посылка вызова и т.п. Сигнализации ТфОП посвящена следующая глава этого тома.

Таким образом, уровень 2 для сигнальных сообщений ISDN заканчивается в терминалах ISDN, в то время как уровень 2 для сигнальных сообщений ТфОП ограничивается рамками сети доступа. Именно поэтому для сообщений управления соединениями порты ISDN идентифицируются адресацией на уровне 2, в то время как порты ТфОП идентифицируются адресацией на уровне 3. С другой стороны, целесообразно также иметь возможность обращения к портам независимо оттого, использует ли протокол адрес на уровне 2 или 3. Это особенно важно для сообщений протокола управления, которые должны относиться как к портам ISDN, так и к портам ТфОП.

Адреса, используемые в интерфейсе V5 на уровнях 2 и 3, выбираются таким образом, чтобы протокол управления мог обращаться к пользовательским портам как ISDN, так и ТфОП с помощью адресов уровня 3, причем таких же, как адреса, используемые для управления базовым соединением как на уровне 2, так и на уровне 3. При этом подходе образуется общее адресное пространство, которое отображается на адресное пространство уровня 2 и адресное пространство уровня 3 (табл. 6.3). Поле адреса содержит 13 битов. В табл. 6.3 приведены значения битов (8—2) второго байта поля адреса. Значения битов (8-3) первого байта поля адреса для служебных протоколов и протоколов ТфОП равны 1.

Общее адресное пространство интерфейса V5 содержит адреса для портов ISDN и портов ТфОП каждого из протоколов V5. Адреса общего пространства для портов ISDN соответствуют адресам уровня 2, используемым для идентификации портов ISDN. Адреса уровня 3 для ISDN определены в стандартных спецификациях протокола ISDN и находятся вне области спецификации интерфейса V5. Значения от 0 до 8175 используются для идентификации пользовательских портов ISDN и не используются для идентификации протокольных объектов уровня 3.

Сообщения служебного протокола управления для адресации на уровне 3 используют адреса общего пространства для портов ТфОП, портов ISDN и самого протокола управления. Адрес уровня 3 для сообщений протокола управления указывает, относится ли сообщение управления к порту ТфОП или к порту ISDN или оно является общим сообщением служебного управления. Адрес уровня 2 указывает, что сообщение принадлежит протоколу управления. Когда этот адрес используется на уровне 3, он указывает, что сообщение не связано с пользовательским портом, а принадлежит указанному конкретному протоколу V5.

Смысл общего адресного пространства и правила его использования станут более понятными читателю, когда он ознакомится с содержанием следующего параграфа 6.6.

Рассмотрим чрезвычайно важное для V5 понятие обрамления кадров. Дело в том, что сообщения ISDN до передачи через V5 уже помещены в информационное поле кадров LAPD. Чтобы эти кадры могли транслироваться через сеть доступа, необходимо снабдить их дополнительной внешней «оболочкой» с ярлыком, указывающим адрес пользовательского порта ISDN. Для сообщений управления соединениями ISDN адрес в этом ярлыке является адресом порта ISDN из общего адресного пространства V5. Такая же двухуровневая структура адресации кадра применима и для сообщений других протоколов, позволяя тем самым свободно специфицировать в дальнейшем внутреннюю часть структуры кадра для новых протоколов сети доступа.

С учетом всего вышесказанного становится понятным разделение уровня LAPV5 на два подуровня: подуровень функций обрамления LAPV5-EF (Enveloping Function sublayer) и подуровень звена данных LAPV5-DL (Data Link sublayer). Справедливости ради следует заметить, что такая двухслойная структура уровня 2 представляется весьма громоздкой, а для служебных протоколов V5 необходимость в ней отсутствует. Более того, внешний адрес в ярлыке и внутренний адрес в кадре с сообщением служебного протокола дублируют одну и ту же информацию. Но это следует принимать как плату за ранее принятые решения, т.к. структура кадра для переноса сообщений управления базовыми соединениями ISDN была стандартизирована до начала разработки спецификаций V5.

Структура обрамления кадра показана на рис. 6.6. Внешний адрес в ярлыке обрамления является 13-битовым числом, которое вместе с тремя фиксированными битами составляет два байта, располагающихся непосредственно за открывающим флагом кадра. Эти 13 битов позволяют присваивать внешнему адресу значения от 0 до 8191 (см. табл. 6.2). Оставшиеся в байтах 2 и 3 биты - это два бита расширения адресного поля (ЕА) и один бит идентификации команды/ответа (C/R) кадра ISDN. Здесь бит C/R всегда имеет фиксированное значение 0, так как его функцию выполняет бит C/R в кадре подуровня звена, находящемся внутри обрамления.

Внешние адреса от 0 до 8175 используются для идентификации портов ISDN, связанных с интерфейсом V5. Остающиеся адреса от 8176 до 8191 используются для идентификации виртуальных портов в оборудовании на любой стороне интерфейса V5. Завершают обрамление два байта проверочной комбинации FCS и закрывающий флаг. Флаги имеют ту же кодировку 01111110, что и, например, в протоколе DSS-1 (см. параграф 3.3).

Минимальный размер не обрамленного кадра (без открывающего и закрывающего флагов и проверочной комбинации) - 3 байта, максимальный - 533 байта. Данная величина требует пояснения. Кадр уровня 2 считается ошибочным, если его длина вдвое превышает разрешенную величину 268 байтов плюс 2 байта. Таким образом, максимально допустимая длина кадра от открывающего флага до закрывающего равна 2-268+2—1=537 байтов. Если вычесть 2 байта флагов и 2 байта проверочной комбинации, то получится упомянутая выше величина 533 байта.

Рис. 6.6. Обрамление кадра

В кадре подуровня звена проверочная комбинация отсутствует (рис. 6.7), поскольку нет необходимости дважды проверять один и тот же кадр.

Рис. 6.7. Кадр подуровня звена

Для сообщений управления базовыми соединениями ISDN кадр подуровня звена LAPV5 начинается полями адреса уровня 2 протокола ISDN. Для других протоколов оно начинается двумя байтами, содержащими адрес подуровня звена. Эти байты содержат, кроме того, биты ЕА и бит C/R, используемые так же, как и в кадрах ISDN. Затем следуют байты поля управления, а за ними может следовать информационное поле, в котором помещено сообщение уровня 3. Максимальный размер этого поля составляет 260 байтов.

Подобно адресу в ярлыке обрамления, внутренний адрес подуровня звена для протоколов, отличающихся от протокола управления соединениями ISDN, также состоит из 13 битов, что позволяет присваивать адресу значения от 0 до 8191. Внешний адрес и адрес подуровня звена для этих протоколов содержат одинаковую информацию. Адреса в диапазоне от 8176 до 8180 указывают протокол ТфОП, протокол управления, протокол ВСС, протокол защиты и протокол управления трактами, как это определено в общем адресном пространстве интерфейса V5 (таблица 6.3).



6.6. Форматы сообщений уровня 3

Все упомянутые в параграфе 6.3 протоколы уровня 3 интерфейса V5 (протокол ТфОП, протокол управления, протокол управления трактами, ВСС-протокол и протокол защиты) являются протоколами, ориентированными на сообщения.

Каждое сообщение содержит три обязательных информационных элемента - дискриминатор протокола (1 байт), адрес уровня 3 (2 байта), тип сообщения (1 байт) и другие информационные элементы, обязательность/необязательность и длина каждого из которых зависят от типа сообщения. Структура сообщения представлена на рис. 6.8.

Рис. 6.8. Формат сообщения протокола V5

Дискриминатор протокола К? занимает первый байт сообщения и имеет значение 01001000 (48 в шестнадцатеричной системе). Назначение дискриминатора протокола - обеспечить возможность отличать сообщения протоколов V5 по ETS 300 324-1 и ETS 300 347-1 (протокола ТфОП, протокола управления, протокола управления трактами, ВСС-протокола и протокола защиты) от сообщений других протоколов, использующих то же соединение уровня 2. Дискриминатор протокола включается в состав сообщений протоколов V5 для обеспечения структурной совместимости с другими протоколами (например, с ETS 300 102-1), в том числе и с новыми протоколами уровня 3, которые пока еще находятся в стадии разработки.

Следом за дискриминатором протокола помещаются два байта адреса уровня 3. Назначение этого обязательного информационного элемента - идентификация логического объекта уровня 3 в рамках интерфейса V5. Для протокола управления в качестве адресов уровня 3 используются значения из общего адресного пространства (табл. 6.3).

Для протокола ТфОП адресом уровня 3 тоже является число, взятое из общего адресного пространства V5; это число идентифицирует конкретный пользовательский порт ТфОП (табл. 6.3). Один бит в двух байтах адреса имеет фиксированное значение, а оставшиеся 15 битов обеспечивают адресацию для 32768 портов ТфОП.

Для протокола ВСС адрес уровня 3 использует 13 битов плюс бит индикации либо сети доступа, либо оконечной АТС, что обеспечивает 8192 возможных значения для идентификации процесса ВСС, к которому относится сообщение.

Для протокола управления трактами адрес уровня 3 содержит только восемь битов. Эти биты образуют значения идентификаторов 16 трактов интерфейса V5.2.

Для протокола защиты адрес уровня 3 может использовать все 16 битов двух байтов адреса. Значение адреса идентифицирует логический С-канал, к которому относится сообщение.

Третий обязательный информационный элемент - тип сообщения - занимает 7 битов четвертого байта сообщения. Правила кодирования типа сообщения для разных протоколов V5 иллюстрирует табл. 6.4. Сами сообщения и их структура будут рассмотрены в двух следующих главах, здесь же целесообразно привести краткие сведения о соглашении относительно правил записи, отражающих как имя, так и содержимое любого сообщения протокола V5.

Как это делалось в главе 4 для протокола DSS-1 и в главе 10 первого тома для ОКС-7, типы сообщений V5 будут записываться заглавными буквами и через дефис, если названия этих типов состоят более чем из одного слова. Приводимые ниже примеры для протоколов V5 взяты из [83].

Если необходимо идентифицировать сторону интерфейса, передающую сообщение, к имени сообщения добавляется через косую черту префикс AN или LE. Например, сообщение AN/ESTABLISH передается сетью доступа, а сообщение LE/ESTABLISH оконечной станцией. Необязательные информационные элементы сообщения указываются добавлением через косую черту суффикса, который начинается заглавной буквой, а если в нем несколько слов, то они соединяются тире. Например, если в сообщение ESTABLISH вводится необязательный информационный элемент Steady-signal (непрерывный сигнал), то запись имеет вид: ESTABLISH/Steadysignal. Если необязательные информационные элементы предусмотрены, но ни один из них в сообщение не включен, это указывается с помощью тире: AN/ESTABLISH/- представляет собой сообщение ESTABLISH, передаваемое сетью доступа и не содержащее необязательных информационных элементов.

Значения необязательных информационных элементов указываются расширением суффикса с помощью двоеточия. Например, при установлении соединения от АТС: LE/ESTABLISH/ Steady-signal: normal polarity, что означает сообщение ESTABLISH, передаваемое станцией и содержащее необязательный информационный элемент Steady-signal, причем этот необязательный информационный элемент имеет значение, представленное словами normal polarity.

Значения обязательных информационных элементов можно указывать, используя тот же способ, что и для необязательных информационных элементов. Кроме того, запись может быть сокращена, поскольку указывать на присутствие обязательного информационного элемента нет необходимости. Например, сообщение STATUS: Response :AN0 представляет собой сообщение STATUS с обязательным информационным элементом Cause (причина), который указывает, что оно было передано в ответ на сообщение LE/STATUS-ENQUIRY и что идентифицируемый адресом уровня 3 в общем заголовке порт ТфОП находится в состоянии 0 (выключен из обслуживания). Сокращение можно использовать и в необязательных информационных элементах. В этом случае подразумевается, что необязательный элемент включен в состав сообщения. Таким образом, сообщение ESTABLISH/Line-information: impedance-marker-set эквивалентно сообщению ESTABLISH: impedance-marker-set, т.к. необязательный элемент Line-information должен присутствовать по смыслу.

Следует отметить, что данное соглашение не исключает записей, которые с точки зрения спецификации интерфейса V5 неверны. Например, запись LE/STATUS - неверна из-за того, что станции не разрешено передавать сообщение STATUS. Если рассматривать только правильные записи, то сообщения PROTOCOLPARAMETER и LE/PROTOCOL-PARAMETER эквивалентны, поскольку сообщение AN/PROTOCOL-PARAMETER было бы нарушением спецификации интерфейса V5.

Соглашение не требует указывать тот протокол V5, которому принадлежит сообщение, поскольку протоколы идентифицируются адресом уровня 2, а также определяются косвенно, по смыслу, именем сообщения. Это соответствует принятому для интерфейса V5 принципу, согласно которому информационный элемент «тип сообщения» в общем заголовке, содержащий код имени сообщения, идентифицирует по смыслу протокол, явно определяемый адресом уровня кадра.



6.7. Мультиплексирование портов ISDN

Трудности специфицирования протокола V5 применительно к портам ISDN неоднократно упоминались в этой главе. В основном эти упоминания сводились к сетованиям по поводу отсутствия машины времени, с помощью которой можно было бы попасть к началу разработки DSS-1 и подсказать разработчикам, что терминалы ISDN будут являться элементами сети абонентского доступа и, следовательно, сообщения DSS-1 будут, наряду с сообщениями других протоколов, мультиплексироваться в интерфейсе V5. Но история не терпит сослагательного наклонения.

В связи с этим уместно привести цитату из монографии одного из руководителей разработки V5 Алекса Гиллеспая [83]:

«... делегаты первых встреч по стандартизации интерфейса V5 не прибегали к физической силе, чтобы урегулировать различные подходы к тому, как должна мультиплексироваться сигнализация ISDN. Рассматривались три варианта, соответствующие уровням 1, 2 и 3 модели ВОС Решение использовать подход трансляции кадров представляло торжество как логики, так и взаимных уступок, и впоследствии было немало слез сожаления, но не было никакого самосожжения».

Именно в результате этой дискуссии в интерфейсе V5 для мультиплексирования сигнальных потоков от пользовательских портов ISDN стал использоваться подход, основанный на трансляции кадров. Он действует на уровне 2 модели OSI и приводит к тому, что сигнализация ISDN прозрачно мультиплексируется сетью доступа. Обнаружение и повторная передача испорченных кадров производится терминалами ISDN и местной АТС, но не сетью доступа.

Другой обсуждавшийся тогда вариант был связан с интерпретацией сообщений уровня 3 ISDN в сети доступа, что привело бы к дополнительному усложнению протоколов V5. Кроме того, в случае внесения каких-либо изменений в протокол сигнализации ISDN пришлось бы модернизировать и протоколы сети доступа.

Третий подход к решению проблемы мультиплексирования сигнализации ISDN, ориентированный на уровень 1, концептуально проще, но он потребовал бы выделения в интерфейсе V5 специальной дополнительной полосы пропускания для сигнализации ISDN. Этот недостаток мультиплексирования на уровне 1 не слишком серьезен, т к полосу пропускания для поддержки D-каналов пользовательских портов можно было бы выделять по требованию, основываясь на сигналах активизации и деактивизации. Более серьезная проблема, связанная с вариантом мультиплексирования на уровне 1, состоит в том, что он потребовал бы также дополнительного аппаратного обеспечения для обслуживания каждого D-канала каждого пользовательского порта, чего удается избежать при ориентации на уровень 2.

Таким образом, решение использовать для сигнализации ISDN мультиплексирование на уровне 2 является наиболее простым и наименее дорогостоящим. Оно исключает расходование полосы пропускания на сигнализацию, в результате чего аппаратное обеспечение сигнализации оказывается проще, чем в варианте мультиплексирования на уровне 1, т.к. оно может быть распределено на несколько портов, вместо того, чтобы предусматривать аппаратные средства для каждого порта Оно также проще, чем в варианте мультиплексирования на базе средств уровня 3, т.к. не требует выполнения обработки сообщений сетью доступа.

Как уже не раз отмечалось, главная функция уровня 2 заключается в согласовании неструктурированного потока данных на физическом уровне, в котором могут быть искажения вследствие ошибок, и структурированных сообщений уровня 3, которые получаются после исправления ошибок В главе 3 было показано, что уровень 2 присваивает каждому кадру порядковый номер и снабжает этот кадр средствами обнаружения ошибок, так что поврежденные кадры можно идентифицировать и запросить их повторную передачу начиная с последнего правильно принятого кадра. Интерфейс V5 для сигнализации ISDN использует подход обнаружения ошибок и повторной передачи, заимствованный из рекомендации Q 921.

Кадр сигнализации ISDN, правильно принятый из пользовательского порта (исходный кадр), дополняется расположенным в начале кадра адресом порта, который передал этот кадр. Проверочная комбинация (FCS) в конце исходного кадра пересчитывается и подставляется вместо исходной Затем модифицированный таким образом кадр проходит через интерфейс V5 к АТС (рис. 6.9). Правильно принятый модифицированный кадр, поступивший от станции через интерфейс V5, обрабатывается в обратном порядке:

адрес порта ISDN отделяется от модифицированного кадра и используется для того, чтобы направить кадр в соответствующий пользовательский порт FCS пересчитывается и заменяет FCS модифицированного кадра, после чего преобразованный в исходную форму кадр передается через пользовательский порт пользователю ISDN.

Для информации D-канала ISDN был принят двухшаговый подход, поскольку общая полоса пропускания, необходимая для передачи данных D-канала через интерфейс V5, может быть больше 64 Кбит/с, доступных в одном С-канале. Чтобы обеспечить необходимую гибкость, пользовательские порты не ассоциируются прямо с С-каналами, а сначала ассоциируются с С-путями, которые затем размещаются в С-каналах интерфейса V5. Это позволяет упростить последующую маршрутизацию в сети связи, т.к. различные типы информации D-канала могут размещаться в разных С-каналах.

Рис. 6.9. Добавление и удаление адресов портов ISDN

Данные одного типа от нескольких разных пользовательских портов мультиплексируются в С-путь этого типа. С-пути разных типов, в свою очередь, мультиплексируются в С-каналы. Если нет необходимости размещать эти три типа данных в разных С-каналах, их можно поместить в одном С-канале, поскольку они различаются своими адресами уровня 2.

В интерфейсе V5 может существовать несколько С-путей s-типа, р-типа и f-типа, при этом их максимальное количество зависит от того, является ли этот интерфейс интерфейсом V5.1 илиУ5.2. Один С-канал также может поддерживать до трех С-путей разных типов, однако в нем не может размещаться более одного С-пути каждого типа, т.к. различить разные С-пути одного типа в одном и том же С-канале невозможно.

Структура городской телефонной сети





Добавить страницу в закладки ->
© Банк лекций Siblec.ru
Электронная техника, радиотехника и связь. Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные и гуманитарные науки.

Новосибирск, Екатеринбург, Москва, Санкт-Петербург, Нижний Новгород, Ростов-на-Дону, Чебоксары.

E-mail: formyneeds@yandex.ru