1.5. Исследование систем линейных уравнений

Рассмотрим систему линейных уравнений.

Задача: определить:

  • Совместна или нет данная система
  • Если совместна, то сколько имеет решений а) единственное б) бесконечное множество

Понятие ранга матрицы

А=(Понятие ранга матрицы) i=Понятие ранга матрицы j=Понятие ранга матрицы

Возьмем в матрице К строк и К столбцов, тогда элементы матрицы, стоящие на пересечении этих строк и столбцов образуют квадратную матрицу порядка К. Определитель этой квадратной матрицы называется минором порядка К для матрицы А.

Опр.1. Наибольший порядок минора матрицы, отличный от нуля называется рангом матрицы.

Опр.2. Число r(A)=k называется рангом матрицы А, если среди миноров порядка k есть по крайней мере один, отличный от нуля, а все миноры большего порядка равны нулю.

Понятие ранга матрицы М=Понятие ранга матрицы=0 М=Понятие ранга матрицы=-20 М=Понятие ранга матрицы=0 М=Понятие ранга матрицы=3 Ранг равен 3.

Совершенно очевидно, что нулевой ранг имеет только нулевая матрица. Если матрица не нулевая то её ранг1. С другой стороны если матрица имеет порядок MxN, то r(A)min(M,N).

Теоремы о ранге матриц

Теорема 1

Если матрица А эквивалентна матрице B, то ранг матрицы А равен рангу матрицы B (элементарные преобразования не изменяют ранга матрицы).

Доказательство

Для докозательства достаточно доказать, что каждое из преобразований не может изменить ранга матрицы.

1) А~B B получена умножением строки(столбца) на отличное от нуля число.

А=А~B	B получена умножением строки(столбца) на отличное от нуля число B=А~B	B получена умножением строки(столбца) на отличное от нуля число

Если i-я строка не входит в выделенный минор то миноры матриц А и B совпадают. Если i-я строка входит в выделенный минор В=А(по св-ву определителей). Если минор А был отличен от нуля, то В будет отличен от нуля. Таким образом умножение на отличное от нуля число не изменяет ранг матрицы.

2) A~B B получена прибавлением строк

А=A~B	B получена прибавлением строк В=A~B	B получена прибавлением строк

 

Если выбранные строки не содержат i-й строки, то соответствующие миноры матриц А и В полностью совпадают. Если минор матрицы А=0, то и минор матрицы В=0, если минор матрицы А0, то и минор матрицы В0.

Если выбранные миноры содержат i-ю и j-ю строки, тогда М(А)=А=Если выбранные миноры содержат i-ю и j-ю строки, тогда

В=Если выбранные миноры содержат i-ю и j-ю строки, тогда

минор В получен из А путем прибавления строки.

Элементарные преобразования получаются с помощью конечного числа преобразований 1 и 2 типа и по уже доказанному на каждом из шагов ранг матрицы не меняется. Следовательно, он не изменится и за конечное число шагов. Ранг матрицы не меняется, если произведено конечное число элементарных преобразований.

Теорема 2

Ранг ступенчатой матрицы равен числу ее ненулевых строк.

Вычисление ранга матрицы

Используя утверждение доказанной теоремы, легко вычислить ранг матрицы

  1. с помощью элементарных преобразований матрица приводится к ступенчатому виду.
  2. считается число ненулевых строк ступенчатой матрицы

Ясно, что если матрица является квадратной и невырожденной, то её ранг равен порядку этой матрицы.

ПРИМЕР

Вычисление ранга матрицы~ Вычисление ранга матрицы~ Вычисление ранга матрицы

Ответ: r(A)=2

Исследование систем линейных уравнений

Рассмотрим систему линейных уравнений

(*)Исследование систем линейных уравнений. Теорема Кронекера-Капелли

А=() H=Исследование систем линейных уравнений. Теорема Кронекера-Капелли

 

Теорема Кронекера-Капелли

Система ур-ний (*) совместна тогда и только тогда, когда ранг матрицы системы А равен рангу расширенной матрицы r(A)=r(H)

Если система совместна, то она имеет единственное решение, если r(A)=r(H)=n и его можно найти методами Крамера или Гаусса.

Если r(A)=r(H)=k<n, то система имеет бесконечно много решений. В этом случае n-k неизвестных обьявляются свободными неизвестными (принимают любые значения), оставшиеся k неизвестных выражаются через эти свободные неизвестные.

Однородные системы линейных уравнений

Если в системе (*) все свободные члены все свободные члены равны нулю, то такая система является однородной.

Однородные системы всегда совместны т.к. ====0 всегда является решением. Такое решение называется тривиальным.

1) все свободные члены то все свободные члены

2) Если ранг матрицы А меньше числа неизвестных,то система имеет бесконечно много решений

Свойства решений линейной однородной системы уравнений

1) Если Свойства решений линейной однородной системы уравнений является решением системы, то Свойства решений линейной однородной системы уравнений также является решением.

Доказательство.

Свойства решений линейной однородной системы уравнений

Свойства решений линейной однородной системы уравнений

Свойства решений линейной однородной системы уравнений

2) Если Свойства решений линейной однородной системы уравнений является решением системы

также является решением той же самой системы, то и также является решением той же самой системы, то и

также является решением системы также является решением системы

Доказательство.

также является решением системы

+

также является решением системы

откуда получим откуда получим

3) Если откуда получим и откуда получим два различных решения системы, то их линейная комбинация, равная их линейная комбинация, равная

также является решением системы.

Доказательство.

Доказательство

+

Доказательство

откуда получим откуда получим

Каждое из решений системы можно записать в виде строки

матрицыКаждое из решений системы можно записать в виде строки, тогда на основании свойств можно утверждать, что матрицы есть решения, то также являются решением. Минимальная возможная система решений через которую выражаются все остальные решения называется фундаментальной системой решений.

Пример.

Пример

Пример~Пример~Пример

{Пример {Пример

{Пример{Пример

ПримерПример

Линейная алгебра и аналитическая геометрия


*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.