1.3. Матрицы. Операции над матрицами

Две матрицы A и B называются равными, если они имеют один и тот же порядок и если элементы стоящие на соответствующих местах равны.

Две матрицы A и B называются равными Две матрицы A и B называются равнымиДве матрицы A и B называются равными

К линейным операциям относятся :

Умножение матрицы на число

Для того чтобы умножить матрицу на число нужно каждый элемент матрицы умножить на это число:

Умножение матрицы на числоУмножение матрицы на числоУмножение матрицы на число

Сложение матриц

Складывать можно только матрицы одинаковых размеров:

Складывать можно только матрицы одинаковых размеров

Свойства линейных операций

Свойства линейных операций

Свойства линейных операций

Свойства линейных операций

Свойства линейных операций

Свойства линейных операций

Если матрица в качестве элементов имеет нули, то такая матрица называется нулевой.

Произведение матриц

Произведение матриц Произведение матрицПроизведение матриц

Произведение матриц Произведение матрицПроизведение матриц

Произведение матриц

Произведение матрицПроизведение матриц

Произведение матриц

Пример:

Пример: Пример:

Пример:.Пример:=Пример:=Пример:

Пример:.Пример:=Пример:

Пример:.

Если для матриц А и В выполняется равенство А* В=В*А, то матрицы называются перестановочными.

Если для матриц А, В, С имеет смысл операция произведения, то выполняются равенства

A(B*C)=(A*B)*C

A(B+C)=AB+AC

(B+C)A=BA+CA

Транспонирование матриц

Рассмотрим матрицы

Транспонирование матриц Транспонирование матриц

AT называется транспонированной по отношению к A

Если AT получена из матрицы А заменой строк на столбцы то

Транспонирование матриц

назавают главной диагональю назавают главной диагональю

Очевидно:

Если для квадратной матрицы выполняется условие

Если для квадратной матрицы выполняется условие

то матрица А называется симметричной и в этом случае достаточно указать элементы, стоящие на главной диагонали и элементы, стоящие над главной диагональю.

Понятие обратной матрицы

Обратные матрицы существуют только для квадратных матриц. Квадратная матрица, у которой на главной диагонали стоят

единицы, а вне главной диагонали - нули, называется единичной матрицей.

Например, единичная матрица второго порядка:

единичная матрица второго порядкаединичная матрица второго порядка

Теорема.

Если А и В – квадратные матрицы одного и того же порядка n, то определитель их произведения равен произведению определителей матриц-сомножителей:

Если А и В – квадратные матрицы одного и того же порядка n

Определение обратной матрицы:

Матрица В называется обратной для матрицы А, если А и В перестановочны и А*В=В*А=Е

Обозначение обратной матрицы:

Обозначение обратной матрицы Обозначение обратной матрицы

Теорема.

Если матрица А имеет обратную, то ее определитель отличен от нуля.

Доказательство.

Так как А имеет обратную матрицу, то

Так как А имеет обратную матрицу, то Так как А имеет обратную матрицу, то

Воспользуемся теоремой о том, что определитель произведения

равен произведению определителей.

равен произведению определителейравен произведению определителей

что и требовалось доказать.

Нахождение обратной матрицы методом Крамера

Теорема.

Если квадратная матрица А имеет определитель отличный от нуля, то данная матрица имеет обратную.

Доказательство.

Пусть матрица А такова, что её определитель отличен от нуля.

Докажем, что существует матрица В, такая что:

Нахождение обратной матрицы методом Крамера*Нахождение обратной матрицы методом Крамера=Нахождение обратной матрицы методом Крамера

 

Отсюда, в частности, следует:

Нахождение обратной матрицы методом КрамераНахождение обратной матрицы методом Крамера

Система (3) –из трех уравнений с тремя неизвестными, и т.к. определитель системы (3) по условию отличен от нуля, то эту систему можно решить методом Крамера причем решение (3) - единственно.

Аналогично можно доказать существование и единственность всех остальных элементов матрицы В.

Алгоритм нахождения обратной матрицы методом Крамера

Первоначально находим определитель матрицы А и если он равен нулю, то обратной матрицы не существует.

Если определитель отличен от нуля, то находим союзную

определитель отличен от нуля матрицу

состоящую из алгебраических дополнений элементов матрицы А.

алгебраических дополнений элементов матрицы Аалгебраических дополнений элементов матрицы А

Элементарные преобразования матриц

Эквивалентные матрицы.

К элементарным преобразованиям относятся:

  1. умножение любой строки матрицы на число, отличное от нуля;
  2. пример

    умножение любой строки матрицы на число , отличное от нуля= умножение любой строки матрицы на число , отличное от нуля

  3. к любой строке можно добавить любую другую строку, умноженую на любое число;
  4. перестановка двух строк.

Матрицы, полученные с помощью элементарных преобразований называются эквивалентными

А~ В, В~ С, А~ С

Вычисление обратной матрицы с помощью элементарных преобразований

Расмотрим квадратную матрицу А и предположим, что

Расмотрим квадратную матрицу А и предположим , что

тогда используя элементарные преобразования эту матрицу можно привести к единичной матрице .Таким образом единичная

матрица эквивалентна любой невырожденой матрице того же порядка.

Теорема

Если элементарные преобразования:

Если элементарные преобразования

переводят невырожденую матрицу А в единичную, то те же самые преобразования, взятые в том же порядке, переводят

единичную матрицу в обратную для A.

Доказательство:

единичную матрицу в обратную для A единичную матрицу в обратную для A

единичную матрицу в обратную для A

отсюда

единичную матрицу в обратную для Aединичную матрицу в обратную для A

Линейная алгебра и аналитическая геометрия


*****
© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.