***** Google.Поиск по сайту:


1.1. Комплексные числа (КЧ)

Математический анализ

1.1. Комплексные числа (КЧ)

Комплексным числом z называется выражение z = a+bi, где , i – мнимая единица. i 2 = –1.

a – действительная часть КЧ или a = Re z.

b – мнимая часть КЧ или b = Im z.

0+bi = bi - чисто мнимое число

a + 0i = a - действительное число

0 + 1i = i

1 + 0i = 1

0 + 0i = 0

мнимая единица

обычная единица

обычный нуль

Z1 = a1 + b1i

Z2 = a2 + b2i

Действия над КЧ

Z1 Z2 = (a1 a2) + (b1 b2)i – сложение/вычитание КЧ.

Возведение в степень мнимой единицы:

i1 = i i2 = – 1 i3 = i i4 = 1

Z1 Z2 = (a1 + b1i)(a2 + b2i) = a1a2 + a1b2i + a2b1i + b1b2i2 =

= (a1a2 – b1b2) + (a1b2 + a2b1)i – произведение КЧ.

Сопряженным числом () для данного комплексного числа называется число, которое отличается только знаком мнимой части от данного числа.

Пример:

  – деление КЧ.

Пример:

Комплексная плоскость

Z = a + bi – алгебраическая форма записи КЧ.

Модуль КЧ

Аргумент КЧ

Аргумент КЧ – .

Полярная система координат

Декартова система. Полярная система

– полярный радиус, – полярный угол, – полярные координаты.

Пример:

– тригонометрическая форма записи КЧ.

Примеры:

Формула Эйлера

– Формула Эйлера

– взаимосвязь между e, i и

– показательная форма КЧ.

КЧ не сравнивают между собой. Множество КЧ не упорядоченно.

Возведение в степень КЧ

При возведении в степень модуль возводиться в эту степень, а аргумент умножается на показатель степени.

Формула Муавра

Возведение во 2 – ю и 3 – ю степень по формуле Муавра:

Используя равенство КЧ, получим: s

Извлечение корня из КЧ

k = 0, 1…,n – 1.

Корень n – ой степени из КЧ имеет n различных значений.

Примеры:

Все корни n-ой степени из единицы находятся на единичной окружности и делят эту окружность на n равных частей.

Математический анализ



***** Яндекс.Поиск по сайту:



© Банк лекций Siblec.ru
Формальные, технические, естественные, общественные, гуманитарные, и другие науки.