2. Дифракция волн

Огибание волнами препятствий или отклонение от прямолинейного распространения в оптически неоднородной среде получило название дифракции.

Дифракция возникает при прохождении световых волн через отверстия в непрозрачных экранах, вблизи границ непрозрачных тел и т.д.

Различаются два вида дифракции световых волн: дифракция Френеля, или дифракция в расходящихся лучах, и дифракция Фраунгофера, или дифракция в параллельных лучах.

В первом случае на препятствие падает сферическая или плоская волна, а дифракционная картина наблюдается на экране, который находится позади препятствия на конечном расстоянии от него.

Во втором случае на препятствие падает плоская волна, а дифракционная картина наблюдается на экране, который находится в фокальной плоскости собирающей линзы, установленной на пути прошедшего через препятствие света.

2.1. Дифракция Фраунгофера на узкой длинной щели в непрозрачном экране

Ширина щели BC=b, длина волны, падающего света λ. Свет падает на щель нормально к её поверхности так что колебания во всех точках щели совершаются в одной фазе. О – оптический центр линзы. Дифракционная картина наблюдается на экране, который установлен в фокальной плоскости линзы. φ – угол дифракции, или угол отклонения от прямолинейного распространения падающих волн, который может принимать значения от 0 до .

F0 – центр дифракционной картины, где интерферируют лучи, угол дифракции которых равен нулю. В F наблюдается центральный дифракционный максимум.

Параллельные лучи BM и CN, идущие от краёв щели под углом дифракции φ, собираются линзой в побочном фокусе Fφ.

Линза обладает тем свойством, что оптические пути лучей BM и DNFφ, где D – основание перпендикуляра, опущенного из точки В на направление луча CN, одинаковы.

Результат интерференции в точке Fφ экрана зависит от разности хода волн и длины волн падающего света. Щель можно разбить по ширине на зоны, которые получили название зон Френеля. Зоны имеют вид параллельных ребру В полосок, разность хода от краев которых равна λ/2.

Число зон Френеля, укладывающихся в отверстие, равно:

.

Все зоны излучают свет в рассматриваемом направлении с одинаковой амплитудой, причём колебания, вызываемые в точке Fφ двумя соседними зонами противоположны по фазе.

Поэтому, если число зон Френеля в отверстии чётное

,

где k=1,2…,

то под углом дифракции, удовлетворяющем условию, наблюдается дифракционный минимум. k – порядок дифракционного минимума.

Если число зон Френеля нечётное

, где k=1,2…,

то под углом дифракции φ удовлетворяющему условию

наблюдается дифракционный максимум, соответствующий действию одной зоны Френеля (k - порядок дифракционного минимума).

Самый яркий центральный максимум наблюдается в главном фокусе линзы F0 (φ=0).

С ростом k ширина зон Френеля уменьшается и интенсивность максимумов быстро падает.

Амплитуда и интенсивность света в точке Fφ равны:

и ,

где А0 – амплитуда, I0 – интенсивность центрального максимума (φ=0).

2.2. Дифракция света на одномерной дифракционной решётке

Одномерная дифракционная решётка представляет собой систему из большого число N одинаковых по ширине и параллельных друг другу щелей в экране, раздельных также одинаковыми по ширине непрозрачными промежутками.

На рисунке 8 показаны только две соседние щели решётки. Величина d=a+b, называется периодом решётки (a=KC – ширина непрозрачного промежутка, b=BK – ширина щели,

- ширина решётки). Если плоская монохроматическая волна с длиной λ падает на решётку нормально, то колебания во всех точках щели происходят в одинаковой фазе. Колебания, возбуждаемые в произвольной точке Fφ фокальной плоскости линзы каждой из щелей, совпадают по амплитуде, но отличаются по фазе. Для каждой пары соседних щелей сдвиг по фазе Δφ0 μежду этими колебаниями одинаков. Сдвиг по фазе зависит от разности хода волн, идущих от точек В и С под углом дифракции φ и длины волны λ.

,

где - разность хода,

D – основание перпендикуляра, опущенного из точки В на направление луча С.

.

Условие наблюдения главных максимумов: или (k=1,2,3)

,

k – порядок интерференционного максимума.

Наибольший порядок спектра наблюдается под углом дифракции: ;

;

;

,

k может принимать только целые значения, поэтому результат, полученный от деления, нужно округлить до меньшего целого числа. Число максимумов наблюдаемых на экране . В центре экрана в точке F0 наблюдается центральный максимум (φ=0, k=0).

Условие наблюдения главных минимумов:

или ;

,

k – порядок главного минимума.

2.3. Разрешающая способность дифракционной решётки

Пусть на дифракционную решётку падает немонохроматический свет с длиной волны λ1 и λ2.

; (близкие длины волн).

Период дифракционной решётке d, число щелей N. В спектре k-ого порядка на экране (рисунок 9) под углом φ1 наблюдается максимум для длины волны λ1, а под углом дифракции φ2 – максимум для волны с λ2. (Fφ1 θ Fφ2 – ρоответственно), максимумы для двух длин волн на экране пространственно разделены, если выполняется условие:

(формула Рэлея).

Это условие получило название разрешающей способности дифракционной решётки. λ можно принять равным λ1 или λ2.

2.4. Дифракция рентгеновских лучей

Кристаллическую решётку твёрдых тел можно рассматривать как пространственную дифракционную решётку, период которой значительно меньше длины волны видимого света (). Для видимого света кристаллы являются оптически однородной средой.

В тоже время для рентгеновских лучей кристаллы представляют естественные кристаллические решётки ().

Дифракция рентгеновских лучей на кристаллах рассматривается как результат интерференции рентгеновского излучения, зеркально отражающегося от систем параллельных плоскостей, которые проходят через узлы кристаллической решётке. Расстояние d между двумя сетчатыми плоскостями называется межплоскостным расстоянием, а угол Θ между падающим лучом и плоскостью – угол скольжения. На рисунке 10 изображены две плоскости, которые проходят через углы кристаллической решётки (сетчатые или атомные плоскости).

На поверхности кристалла под углом скольжения Θ падает плоская волна с длиной λ. Рентгеновские лучи не преломляются в кристалле, т.к. показатель преломления для них равен единице (примерно). Разность хода интерферирующих волн (лучи 1 и 2), отражённых от двух параллельных плоскостей равна . Отражение наблюдается в направлениях, соответствующих дифракционным максимумам, которые удовлетворяют условию Вульфа-Брэгга:

, m=1,2,3…

m – порядок дифракционного максимума

,

Θ – σгол скольжения для наблюдения максимума удовлетворяет этому условию.

Угол скольжения, соответствующий первому дифракционному максимуму (m=1)

.

Механика, Электричество и магнетизм, Колебания, Волны, Оптика, Квантовая механика, Твердое тело


*****
Новосибирск © 2009-2017 Банк лекций siblec.ru
Лекции для преподавателей и студентов. Формальные, технические, естественные, общественные, гуманитарные, и другие науки.