1.6.1. Органические полимеры

1.6.2. Смолы

1.6.3. Битумы

1.6.4. Гибкие пленки

1.6.5. Волокнистые материалы

1.6.6. Пластические массы

1.6.7. Эластомеры

1.6.8. Стекла

1.6.9. Керамические диэлектрические материалы

По области применения все диэлектрические материалы можно разделить на электроизоляционные и диэлектрики в электрических конденсаторах.

Первые используются для создания электрической изоляции, которая окружает токоведущие части электрических устройств и отделяет друг от друга части, находящиеся под различными электрическими потенциалами.

Вторые используются для создания определенного значения электрической емкости конденсатора, а в некоторых случаях для обеспечения определенного вида зависимости этой емкости от температуры и других факторов.

По возможности управления электрическими свойствами диэлектрические материалы можно разделить на пассивные с постоянными свойствами и активные, свойствами которых можно управлять (сегнетоэлектрики, пьезоэлектрики, пироэлектрики,электреты и др.).

Диэлектрические материалы подразделяются по их агрегатному состоянию на газообразные, жидкие и твердые. В особую группу могут быть выделены твердеющие материалы, которые в исходном состоянии являются жидкостями, но затем отверждаются и в готовой, находящейся в эксплуатации изоляции, представляют собой твердые тела (лаки и компаунды).

В соответствии с химической природой все диэлектрики делятся на органические и неорганические. Под органическим веществами подразумеваются соединения углерода; обычно они содержат также водород, кислород, азот, галогены или иные элементы. Прочие вещества считаются неорганическими; многие из них содержат кремний, алюминий и др. металлы, кислород и т.п.

Количество диэлектрических материалов исчисляется многими тысячами. Поэтому здесь будут даны лишь общие представления об особенностях строения и свойств основных классов диэлектриков.

1.6.1. Органические полимеры

Среди диэлектриков особое значение имеют высокомолекулярные органические материалы. По своей природе они являются полимерами , т.е. веществами, молекулы которых представляют совокупность весьма большого числа имеющих одинаковое строение групп атомов, и получаются в результате объединения друг с другом молекул, сравнительно весьма простых по своему составу веществ, так называемых мономеров.

Реакция образования полимера из мономера носит название полимеризации. При полимеризации молекулярная масса, естественно, увеличивается; возрастает температура плавления и кипения, повышается вязкость; в процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости и далее в состояние твердого тела; уменьшается растворимость и т.д.

Простой пример: стирол – жидкий ненасыщенный углеводород, имеющий элементарный состав С8Н8 и строение молекулы

Благодаря наличию двойной связи между двумя соседними атомами углерода обладает способностью легко полимеризоваться. Образующийся в результате полимеризации из стирола полимер стирола - так называемый полистирол - является уже твердым веществом; его молекула имеет строение

и может быть представлена как цепочка, состоящая из одинаковых повторяющихся звеньев, каждое из которых представляет собой одну молекулу мономера - стирола, но с измененным характером связей между атомами С (простая связь С - С, а не двойная С = С):

где n - степень полимеризации, т.е. число молекул мономера, объединившихся в одну молекулу полимера.

Для полистирола n может доходить до 6000; т.о., тогда как молекулярная масса стирола 12·8 + 1·8 = 104, молекулярная масса полистирола составляет уже 624000. Температура плавления стирола минус 33°С, а температура размягчения полистирола составляет плюс 70 - 85°C.

Процесс полимеризации протекает при различных условиях с различной скоростью. Например, стирол сохраняется на холоде и в темноте продолжительное время, однако повышение температуры, освещение, добавление катализаторов способны резко ускорить переход жидкого стирола в твердый полистирол. Т.о., скорость полимеризации можно регулировать, изменяя условия, в которых протекает процесс полимеризации.

При определенных условиях (сравнительно высокая температура, механическая обработка и др.) полимер может разлагаться на вещества с меньшей степенью полимеризации. Такой процесс, противоположный процессу полимеризации, называется деполимеризацией.

Могут существовать и более сложные случаи полимеризации. Такова, например, совместная полимеризация (сополимеризация) нескольких мономеров различного состава и поликонденсация, когда не все атомы мономерных молекул входят в состав образующихся полимерных молекул, а одновременно с образованием полимера выделяется вода или иные низкомолекулярные вещества.

Полимеры делятся на две группы: линейные и пространственные полимеры. Молекулы линейных полимеров имеют вид цепочек или нитей (конечно, не прямых, а изогнутых и переплетенных друг с другом), так что отношение длины молекулы к ее поперечным размерам может быть порядка тысячи. Молекулы пространственных полимеров развиты в пространстве более равномерно, так что они имеют более компактную форму, приближаясь к форме шара.

В практике распространено разделение полимеров на термопластичные и термореактивные.

Термопластичные материалы при достаточно низких температурах тверды, но при нагреве становятся мягкими и легко деформируются; они могут растворяться в соответствующих растворителях Характерной особенностью таких материалов является то, что нагрев до температуры, соответствующей их пластичному состоянию, не вызывает необратимых изменений их свойств.

В противоположность материалам этой группы термореактивные материалы (реактопласты) при нагреве претерпевают необратимое изменение свойств: как говорят, они запекаются, т.е. приобретают значительную механическую прочность и твердость, теряя при этом свойства растворимости и плавкости.

1.6.2. Смолы

При достаточно низких температурах смолы – аморфные стеклообразные массы, более или менее хрупкие. При нагреве смолы размягчаются, становясь пластичными, а затем и жидкими. Смолы большей частью нерастворимы в воде и мало гигроскопичны, но растворимы в подходящих по химической природе органических растворителях.

Смолы широко применяются в виде важнейшей составной части лаков, компаундов, пластмасс, пленок, искусственных и синтетических волокнистых материалов. По своему происхождению смолы делятся на природные, искусственные и синтетические.

Природные представляют собой продукты жизнедеятельности животных организмов (щелак) или растений–смолоносов (канифоль). Сюда же относятся ископаемые смолы – копалы.

Наибольшее значение имеют синтетические смолы – полимеризационные и конденсационные. Общим недостатком конденсационных смол является то, что при их отверждении происходит выделение воды или др. низкомолекулярных веществ, ухудшающих свойства смолы. Типичные представители синтетических смол: поливинилхлорид, фторопласт-4 (зарубежные аналоги известны под названием тефлон, дайфлон), полиуретаны, бакелит, новолак, полиэтилентерефталат, эпоксидные смолы, силиконы.

1.6.3. Битумы

Битумы – аморфные материалы, представляющие собой смеси углеводородов и обладающие характерным комплексом свойств. Они имеют черный или темно-коричневый цвет, при достаточно низких температурах хрупки и дают характерный излом в виде раковин. Битумы растворяются в углеводородах – легче ароматичных (бензол, толуол и др.), несколько труднее в бензине, немаслостойки. В спирте и воде битумы нерастворимы, они имеют малую гигроскопичность и в толстом слое практически водонепроницаемы. Битумы термопластичны плотность их близка к 1 Мг/м3.

Различают битумы искусственные (нефтяные), представляющие собой тяжелые продукты перегонки нефти, и природные (ископаемые), называемые также асфальтами. Залежи асфальтов связаны с нефтяными месторождениями, т.к. в природных условиях асфальты также образовались из нефти.

1.6.4. Гибкие пленки

Особый вид изделий из органических полимеров – тонкие прозрачные гибкие пленки, выпускаемые в рулонах. Эти пленки, обладающие высокой электрической и механической прочностью, находят широкое применение в изоляции электрических машин, кабелей и обмоточных проводов и т.п.

Гибкие пленки могут быть изготовлены из линейных полимеров с достаточно высокой молекулярной массой, т.е. с большой длиной молекул.

Пленки из эфиров целлюлозы весьма распространены в технике и в быту; к ним относят фото- и кинопленки и упаковочные материалы (целлофан – пластифицированная глицерином пленка из материала, аналогичного по составу искусственному вискозному шелку).

Из полярных синтетических пленок большое значение имеют полиэтилентерефталатные пленки (майлар, мелинекс, хостафан и др.) толщиной от 0.04 до 0.35 мм. Они имеют хорошие механические и электроизоляционные свойства, химически стойки и нагревостойки; по короностойкости они превосходят как триацетатные, так и полиэтиленовые и полистирольные пленки.

Среди неполярных пленок большое значение имеют пленки из полиэтилена, полипропилена, полистирола (стирофлекса), политетрафторэтилена.

1.6.5. Волокнистые материалы

Это материалы, которые состоят преимущественно из частиц удлиненной формы – волокон. В текстильных материалах волокнистое строение совершенно очевидно. В дереве, бумаге, картоне волокнистое строение может быть изучено с помощью микроскопа при небольшом увеличении.

Преимущества многих волокнистых материалов: дешевизна, довольно большая механическая прочность и гибкость, удобство обработки. Недостатками их являются невысокие электрическая прочность и теплопроводность (из-за наличия промежутка между волокнами, заполненного воздухом). Гигроскопичность более высокая, чем у массивного материала того же химического состава. Свойства волокнистых материалов могут быть значительно улучшены путем пропитки, поэтому такие материалы в электрической изоляции обычно применяют в пропитанном состоянии.

Большая часть волокнистых материалов – органические вещества. Это материалы растительного (дерево, хлопчатобумажное волокно, бумага и пр., состоящие в основном из целлюлозы) и животного происхождения (шелк, шерсть), искусственные волокна, получаемые путем химической переработки природного волокнистого сырья и, наконец, приобретающие особо важное значение в последнее время синтетические волокна, изготовляемые из синтетических полимеров.

1.6.6. Пластические массы

Пластмассы (пластики) характеризуются способностью под влиянием внешнего давления приобретать определенную форму, соответствующую очертаниям пресс-формы, используемой для прессования изделий.

В большинстве случаев пластмассы состоят из двух основных компонентов: связующего и наполнителя. Связующее – обычно органический полимер, обладающий способностью деформироваться под воздействием давления. Иногда применяется и неорганическое связующее, например, стекло в микалексе, цемент в асбоцементе. Наполнитель, прочно сцепляющийся со связующим веществом, может быть порошкообразным, волокнистым, листовым; наполнитель существенно удешевляет пластмассу и в то же время может улучшать ее механические характеристики. Гигроскопичность и электроизоляционные свойства из-за введения наполнителя могут иногда ухудшаться. Примеры пластиков: гетинакс (прессованная бумага, пропитанная бакелитом), текстолит (ткань, пропитанная бакелитом или эпоксидной смолой), текстогетинакс (комбинированный слоистый пластик с внутренними слоями бумаги и наружными – с обеих сторон – слоями хлопчатобумажной ткани).

1.6.7. Эластомеры

Эластомеры – материалы на основе каучука и близких к нему по свойствам веществ.

Натуральный каучук получается из особых растений – каучуконосов. По химическому составу каучук представляет собой полимерный углеводород, имеющий состав (С5Н8)n и строение, характеризуемое наличием двойных связей:

химическое строение каучука

Из-за малой стойкости к действию как повышенных, так и пониженных температур, а также растворителей чистый каучук для изготовления электрической изоляции не употребляют. Для устранения этих недостатков каучук подвергают так называемой вулканизации, т.е. нагреву после введения в него серы. При вулканизации происходит частичный разрыв двойных связей цепочечных молекул и сшивание цепочек через атомы –S – с образованием пространственной структуры. При этом получаются резины – мягкая – с содержанием 1-3% серы, обладающая весьма высокой растяжимостью и упругостью и твердая (эбонит) при содержании серы 30-35% - твердый материал, обладающий высокой стойкостью к ударным нагрузкам.

1.6.8. Стекла

Стекла – неорганические аморфные вещества – представляют собой сложные системы различных окислов. Кроме стеклообразующих окислов, т.е. таких, каждый из которых способен сам по себе в чистом виде образовывать стекло (SiO2, B2O3) в состав стекол входят и другие окислы: щелочные Na2O, K2O, щелочно-земельные CaO, BaO, а также PbO, Al2O3 и др. Основу большинства стекол составляет диоксид кремния; такие стекла называют силикатными.

Свойства стекол меняются в широких пределах в зависимости от их состава и тепловой обработки.

При кристаллизации стекол специального состава получаются ситаллы. Они занимают промежуточное положение между обычными стеклами и керамикой, почему иногда называются стеклокерамикой. В отличие от стекол ситаллы непрозрачны, но многие из них в тонком слое заметно пропускают свет. Кроме хороших электроизоляционных свойств ситаллы обладают высокой механической прочностью, пониженной хрупкостью, широким диапазоном температурного коэффициента линейного расширения, высокой точностью размеров изделий.

Особую область применения имеют фотоситаллы: после воздействия на заготовки из светочувствительного стекла (возможно – по определенному рисунку, сквозь отверстия в трафарете) ультрафиолетового облучения и кристаллизации засвеченной заготовки последняя может подвергаться травлению в кислоте, причем менее кислотостойкая закристаллизовавшаяся часть изделия растворяется; таким образом получается изделие сложной формы, которое вновь подвергается всестороннему облучению и дополнительно кристаллизуется уже при более высокой температуре.

1.6.9. Керамические диэлектрические материалы

Керамикой называют неорганические материалы, из которых могут быть изготовлены изделия той или иной формы, подвергаемые в дальнейшем обжигу при высокой температуре; в результате обжига в керамической массе происходят сложные физико-химические процессы, благодаря которым готовое изделие приобретает нужные свойства. Ранее керамические материалы изготовлялись на основе глины, образующей в смеси с водой пластичную, способную формоваться массу и после обжига приобретать значительную механическую прочность. Сейчас появились и другие виды керамических материалов, в состав которых глина входит в очень малом количестве или же совсем не входит. Металлизация керамики (обычно нанесением серебра методом вжигания) обеспечивает возможность осуществления спайки с металлом, что имеет особое значение для создания герметизированных конструкций.