2.1. Подключение абонентов к цифровым телефонным станциям

2.1.1. Несколько предварительных замечаний

2.1.2. Некоторые особенности цифровизации местных телефонных сетей

2.1.2.1. Сетевые аспекты

2.1.2.2. Экономические аспекты

2.1.3. Подключение к ТФОП новой группы абонентов

2.1.4. Замена аналоговой АТС на цифровую коммутационную станцию

2.1.5. Замена нескольких АТС одной коммутационной станцией

2.1.6. Несколько общих замечаний к разделу 2.1

2.2. Варианты организации сети доступа в узкополосной ЦСИО

2.2.1. Общие принципы интегрального обслуживания

2.2.2. Рекомендации по созданию сети доступа в ЦСИО

2.2.2.1. Проблемы организации U-интерфейса

2.2.2.2. Концепция “наложенной” сети для ЦСИО

2.2.2.3. Развитие ЦСИО в процессе цифровизации ТФОП

2.2.3. Нужна ли сегодня узкополосная ЦСИО?

2.3. Широкополосные сети доступа

2.3.1. Виды широкополосных сетей доступа

2.3.2. Комбинированная среда “волокно-коаксиал”

2.3.3. Пассивная оптическая сеть

2.4. Варианты организации сети доступа в широкополосной ЦСИО

2.4.1. Некоторые особенности Ш-ЦСИО

2.4.2. Технология АТМ

2.4.3. Интерфейс пользователь-сеть Ш-ЦСИО

2.4.4. Сеть доступа для Ш-ЦСИО

2.4.4.1. Общие соображения

2.4.4.2. Вероятные сценарии создания Ш-ЦСИО

2.4.4.2.1. Небольшое предисловие

2.4.4.2.2. Технология АТМ в корпоративных сетях

2.4.4.2.3. Технология АТМ в сети общего пользования

2.4.4.2.4. Создание ядра сети АТМ

2.4.4.2.5. Расширение ядра сети АТМ: размещение концентраторов

2.4.4.2.6. Расширение ядра сети АТМ: замена коммутационных станций

2.4.4.2.7. Расширение ядра сети АТМ: иерархические аспекты

2.4.4.2.8. Сосуществование разных видов распределения информации

2.4.4.3. Варианты реализации сети доступа в Ш-ЦСИО

2.5. Доступ к телекоммуникационной системе по эфиру

2.5.1. Несколько предварительных замечаний

2.5.2. Оценка экономической эффективности технологии WLL

2.5.3. Основные сценарии построения сети абонентского доступа

2.5.4. Сеть абонентского доступа, основанная на технологии LMDS

2.5.5. Поддержка функций мобильности сетью абонентского доступа

2.5.6. Интеграция стационарных и мобильных сетей связи

2.1. Подключение абонентов к цифровым телефонным станциям

2.1.1. Несколько предварительных замечаний

Все соображения, изложенные в разделе 2.1, основаны на том, что подключение абонентов к телекоммуникационной системе будет осуществляться через цифровую телефонную станцию. В этом плане для нас весьма существенны два обстоятельства:

- тип телефонной станции, так как цифровое коммутационное оборудование диктует определенные принципы построения ГТС и СТС [1-4];

- вид основной среды распространения сигналов (кабель с медными жилами или оптическими волокнами).

Принципы цифровизации ГТС и СТС, строго говоря, не входят в круг вопросов, непосредственно связанных с сетями абонентского доступа. Тем не менее, некоторые аспекты применения цифрового коммутационного оборудования могут существенно влиять на принципы создания или модернизации сетей абонентского доступа. В параграфе 2.1.2 изложены те аспекты цифровизации ГТС и СТС, которые представляют практический интерес с точки зрения абонентского доступа.

Использование цифровой (как, впрочем, и аналоговой) коммутационной станции подразумевает достаточно широкое использование кабелей связи для организации АЛ. Это, конечно, не исключает применение радиотехнических средств для подключения некоторой части абонентов к коммутационной станции. Но для оптимального сценария - при создания сети абонентского доступа или ее модернизации - необходимо проанализировать и другую возможность. Речь идет о том, чтобы отказаться от установки коммутационной станции. Такой подход рассматривается в разделе 2.5. Основная область практического применения подобного решения - сельская связь.

Текст предыдущего абзаца постепенно ведет читателя к одному весьма важному выводу, который, на мой взгляд, очень сложно обосновать, даже используя современные экономико-математические методы. Если бы я решился ввести эпиграф к дальнейшим рассуждениям, то рискнул бы перефразировать профессора Преображенского, героя романа М.А. Булгакова “Собачье сердце”. Слова Филиппа Филипповича можно трансформировать следующим образом: “Следовательно, разруха не в системе связи, а в головах”.

Заранее приношу свои извинения тем специалистам по проектированию и построению сетей связи, которые понимают, что внедрение цифровой техники передачи и коммутации означает существенную качественную модернизацию всей телекоммуникационной системы. Но мне известны примеры, когда руководство местной телефонной сети принимало решение в пользу самых неудачных вариантов использования цифровой техники передачи и коммутации. К этому следует добавить неодолимое желание некоторых Операторов сохранить возможность спаренного включения терминалов, соединить цифровые коммутационные станции трактами аналоговых систем передачи... Можно, к сожалению, привести и другие примеры подобных анахронизмов.

Итак, резюмируем цель этого лирического отступления: создавая современную сеть абонентского доступа необходимо понимать, что решается одна из важнейших задач создания телекоммуникационной системы XXI века. Коль скоро я стал ссылаться на источники, редко используемые для технико-экономического анализа, можно, еще раз вспомнив известные истины, сформулировать одно из ключевых правил создания или модернизации сети абонентского доступа в виде постулата: «Приносить пользу и не вредить». Возможно, этот принцип Гиппократ трактовал шире, чем одну из чисто профессиональных заповедей Врача. В любом случае, эти слова мне кажутся уместными.

Следующее замечание относится к классификации возможных вариантов установки цифровой коммутационной станции. Прежде всего, необходимо отметить тот неприятный факт, что методика оптимального построения местной телефонной сети в условиях весьма широкого использования цифровой коммутационной техники еще не разработана. Следовательно, для выбора экономичной структуры сети абонентского доступа необходимо рассмотреть все возможные сценарии цифровизации ГТС и СТС. Эти сценарии могут быть объединены в три большие группы. Соответствующие решения изложены в параграфах 2.1.3 - 2.1.5.

Последний комментарий определяет круг рассматриваемых ниже вопросов. В основном, мы будем разрабатывать структуру сети абонентского доступа. Эти результаты безусловно имеют самостоятельное значение, но они интересны и для постановки задач планирования сети абонентского доступа.

2.1.2. Некоторые особенности цифровизации местных телефонных сетей

2.1.2.1. Сетевые аспекты

Стратегия развития местной телефонной сети может рассматриваться как долгосрочный план, который принят Оператором для поэтапной модернизации эксплуатируемой им телекоммуникационной системы. Подобный план включает в себя несколько важных положений, среди которых нам будут особо интересны два следующих:

- ожидаемое изменение Операторской деятельности, касающееся перечня предлагаемых абонентам услуг;

- выбранный Оператором сценарий цифровизации местной телефонной сети.

Почему Оператору местной телефонной сети необходимо искать новые ниши на рынке телекоммуникационных услуг? Ответ на этот вопрос проясняет рисунок 2.1, заимствованный из [5]. Удельный вес доходов Операторов от услуг телефонной связи за период [Т1, Т2] снизится с 80% до 50%. Период [Т1, Т2] для местных сетей России будет колебаться в достаточно широких пределах. Мне представляется, что для некоторых ГТС время “Т1” уже наступило; такая гипотеза основана, преимущественно, на оценках ряда Операторов. Для местных телефонных сетей период [Т1, Т2] может оцениваться, в среднем, как 10 лет.

Изменение доходов Оператора от услуг ТФОП

Рисунок 2.1

Тенденция, иллюстрируемая рисунком 2.1, диктует изменения в стратегии Операторской деятельности. Многие Операторы ТФОП в развитых странах активно расширяют сферу своего бизнеса. Во-первых, форсируется естественное (эволюционное) развитие ТФОП, заключающееся во введении услуг Интеллектуальной Сети и ЦСИО. А во-вторых, происходит вторжение некоторых Операторов ТФОП на рынок широкополосных услуг. В основном, конкурентная борьба развернулась в сфере кабельного телевидения [6], Операторов которого, в свою очередь, давно привлекает рынок телефонной связи.

Эти соображения, на первый взгляд, весьма далеки от практических задач оптимального построения сети абонентского доступа. И в ряде случаев решения Оператора по введению новых услуг практически не окажут влияния на принципы реализации сети абонентского доступа. Но вероятна и принципиально иная картина. Например, Оператор принимает решение заменить АТС всех уровней иерархии на коммутаторы АТМ; такой сценарий рассматривается, в частности, в работах [7, 8]. В данном случае, принципы построения сети абонентского доступа могут кардинально отличаться от решений, типичных для ТФОП.

Известные мне проекты модернизации местных телефонных сетей в развитых странах пока не предусматривают столь резкий качественный переход, каким является использование в качестве устройств распределения информации исключительно коммутаторов АТМ. Поэтому далее мы будем предполагать, что, по крайней мере, все МС в перспективных местных телефонных сетях будут системами с коммутацией каналов. Но отличительной особенностью этих МС будет повышение емкости вплоть до 100000 номеров [9 - 12], что обеспечивает экономичное построение ГТС и СТС. Естественно, такое повышение емкости МС актуализирует разработку новых принципов построения сетей абонентского доступа.

Два последних предложения вплотную приближают нас к весьма важному вопросу - выбору Оператором сценария цифровизации местной телефонной сети. Можно выделить три базовых сценария. Ниже будут рассмотрены их технические аспекты. А в параграфе 2.1.2.3 читатель сможет найти некоторые соображения, касающиеся экономических оценок каждого сценария.

Первый сценарий - поэтапная модернизация местной телефонной сети. Существенная особенность этого сценария состоит в том, что на каждом этапе решается локальная задача. Например, происходит установка новой АТС в застраиваемом микрорайоне города, заменяется устаревшая коммутационная станция и так далее. В этом случае, практически невозможно определить структурные характеристики ГТС (или СТС) к тому времени, когда она превратится в полностью цифровую телефонную сеть, то есть, достаточно сложно оценить число коммутационных станций и топологию сети.

Второй сценарий подразумевает разработку оптимальной структуры полностью цифровой местной телефонной сети. После этого составляется программа реализации выбранной Оператором структуры ГТС или СТС. Таким образом, результаты цифровизации местной телефонной сети известны заранее. Кроме того, весь процесс модернизации расписан по этапам.

Выполнению второго сценария будет препятствовать множество факторов, часть которых невозможно предвидеть при разработке соответствующей программы. Оператор, вероятно, будет вынужден искать компромиссное решение между первым и вторым сценариями. Таких решений может быть несколько. Их совокупность можно рассматривать как третий сценарий цифровизации местной телефонной сети.

Рассмотрим гипотетическую ГТС малой емкости, состоящую из четырех электромеханических РАТС. Задача Оператора состоит в том, чтобы за десять лет заменить все электромеханические РАТС цифровыми коммутационными станциями. Будем считать, что каждая i-ая РАТС была введена в эксплуатацию раньше, чем РАТС с индексом (i+1).

Процесс модернизации ГТС иллюстрируется рисунком 2.2, состоящим из двух фрагментов. Левый фрагмент показывает процесс модернизации ГТС по первому сценарию, а правый - по второму. Введем для второго сценария гипотезу об оптимальной структуре цифровой ГТС. Будем полагать, что самое эффективное решение - установка одной цифровой коммутационной станции с концентраторами. Первый сценарий подразумевает поэтапную замену электромеханических АТС. Структура ГТС в таком случае не изменяется. Последнее предположение определяет число этапов в процессе модернизации местной телефонной сети. Если (согласно первому сценарию) шаг за шагом заменяются все четыре электромеханические станции, то логично рассматривать четыре этапа модернизации ГТС.

Два сценария модернизации ГТС

Рисунок 2.2

Первый этап идентичен для обоих сценариев. Аналоговая РАТС1 заменяется цифровой коммутационной станцией. Используя терминологию, предложенную в первой главе, новые цифровые станции будем обозначать аббревиатурой МС (местная станция). Не исключено, что при введении МС1 произойдут определенные изменения соответствующей сети абонентского доступа. Но эти возможные изменения не приведут к ее существенной реконструкции.

На втором этапе проявляется принципиальное различие между двумя сценариями. Первый сценарий подразумевает замену аналоговой РАТС2 на цифровую коммутационную станцию МС2. Во втором случае РАТС2 заменяется концентратором, обозначенным как К1. Это означает, что сеть абонентского доступа начинает существенно меняться. Забегая вперед, отметим, что все четыре пристанционных участка постепенно сольются в единую сеть абонентского доступа.

Третий этап предусматривает замену электромеханической РАТС3. Если Оператор выбрал первый сценарий, то сеть абонентского доступа цифровой коммутационной станции МС3 не претерпит существенных изменений. Выбор второго сценария подразумевает замену РАТС3 концентратором К2, что приводит к дальнейшему расширению границ пристанционного участка МС1. Сеть абонентского доступа этой коммутационной станции содержит уже два концентратора.

Четвертый этап завершает процесс цифровизации ГТС, выбранной в качестве модели местной телефонной сети. Если Оператор выбрал первый сценарий, он получит полностью цифровую ГТС, содержащую четыре коммутационные станции, то есть, структура местной сети не изменяется. Если Оператор продолжает реализацию второго сценария, то цифровая ГТС превращается в сеть, называемую нерайонированной [13]. Это происходит, когда вместо РАТС4 устанавливается концентратор К3.

Итак, на примере цифровизации гипотетической ГТС рассмотрены два сценария модернизации местных телефонных сетей. Выше упоминался и третий сценарий, который был определен как компромиссное решение между первым и вторым сценариями. Компромиссных решений может быть несколько, но все они образуют некое множество -  третий сценарий модернизации ГТС. На рисунке 2.3 показаны примеры компромиссных решений, которые принимаются на четвертом этапе модернизации ГТС.

Примеры изменения проектных решений

Рисунок 2.3

Левая часть рисунка 2.3 иллюстрирует компромиссное решение, которое заключается в отказе от установки концентратора при замене РАТС4. Вместо демонтируемой АТС устанавливается вторая цифровая коммутационная станция - МС2. Подобное решение может возникнуть при каких-либо изменениях в организации местной телефонной связи. Простейший пример - строительство нового жилого микрорайона, что подразумевает заметный рост численности потенциальных абонентов. Если необходимо подключить большое число новых абонентов, то не исключена ситуация, когда установка новой МС2 станет экономически выгоднее, чем применение концентратора.

Правая часть рисунка 2.3 показывает другое компромиссное решение. Вместо демонтируемой РАТС4 используются два концентратора. Один из концентраторов (К3) подключается к МС1 через концентратор К2. Такую структуру обычно называют двухступенчатой. Другой концентратор (К4) подключается к МС1 непосредственно. Данное компромиссное решение может оказаться эффективным, если РАТС4 демонтируется в два этапа.

Достоинства и недостатки каждого сценария необходимо оценивать комплексно. Обсуждение этого вопроса лучше провести в конце следующего параграфа, когда мы будем располагать некоторыми технико-экономическими оценками.

2.1.2.2. Экономические аспекты

Затраты на цифровизацию местной телефонной сети зависят от множества факторов. Безусловно, выбор сценария также влияет как на технические характеристики телекоммуникационной системы, так и на ее стоимость. В этом параграфе мы введем следующее условие: любой сценарий цифровизации ГТС (или СТС) приводит к созданию цифровой сети с заранее заданными и практически одними и теми же техническими характеристиками.

Что это значит? Во-первых, цифровая местная телефонная сеть должна обеспечивать установленные для ТФОП показатели качества обслуживания вызовов и качества передачи речи. Во-вторых, абонентам местной телефонной сети должны быть доступны все обязательные для ТФОП услуги вне зависимости от места включения АЛ - коммутационная станция, концентратор или иное устройство сети абонентского доступа. В-третьих, местная цифровая телефонная сеть должна обеспечить введение широкого спектра новых телекоммуникационных услуг, предусмотренных, например, концепциями ЦСИО и Интеллектуальной Сети.

Конечно, цифровые телефонные сети, построенные на основе разных сценариев, будут различаться по своим техническим характеристикам. Но эти различия не столь существенны. Таким образом, возможные сценарии цифровизации местных телефонных сетей целесообразно сравнивать по экономическим показателям. Результаты соответствующего анализа можно использовать в качестве критерия оптимальности проектных решений.

В первую очередь, рассмотрим эффективность использования цифровых коммутационных станций большой емкости. Исследуемую характеристику можно выразить функцией

C = F(N),                                                                                                                       (2.1)

где C - стоимость одного номера (порта) цифровой коммутационной станции, а N - емкость этой станции.

Примерный характер интересующей нас функции может быть установлен следующим образом. Рассматривается ряд контрактов на покупку Операторами цифровых коммутационных станций емкостью N1, N2, ... , Nk. Статьи затрат, приходящиеся на коммутационное оборудование, позволяют для каждого контракта рассчитать стоимость одного номера - C1, C2, ... , Ck соответственно. Эти результаты позволяют построить дискретную функцию, характер которой на рисунке 2.3 показан заштрихованными столбиками.

Зависимость стоимости номера цифровой коммутационной станции от ее емкости

Рисунок 2.4

Функцию F(N) желательно представить непрерывной кривой. Это несложно сделать, используя, например, метод наименьших квадратов [14]. Проблема заключается в том, что стоимость оборудования, приобретаемого по контракту, либо составляет коммерческую тайну, либо не разглашается Оператором по иным причинам. Таким образом, накопить статистические данные, необходимые для достоверной оценки функции F(N), не так просто.

Имевшиеся в моем распоряжении неофициальные сведения позволяют ввести гипотезу (ее необходимо тщательно проверить) о том, что стоимость одного номера цифровой коммутационной станции емкостью N номеров может оцениваться следующим соотношением:

,                                                                                                       (2.2)

где C0 - стоимость одного номера коммутационной станции с «эталонной» емкостью N0.

В качестве «эталона» целесообразно выбрать величину 10000 номеров, которая является типичной емкостью для электромеханических АТС. Для сравнения вариантов можно оперировать относительными единицами, которые позволяют найти самое экономичное решение, хотя и дают абсолютных стоимостных характеристик каждого из рассматриваемых решений. Величину C0 можно, в таком случае, принять за единицу. Вычисления по формуле (2.2) дают следующие любопытные оценки:

- при установке цифровой коммутационной станции для включения 5000 абонентов стоимость одного номера составит 1,26 от эталонного значения;

- повышение емкости цифровой коммутационной станции в четыре раза (модель ГТС, введенная в предыдущем параграфе) обеспечивает уменьшение затрат на один номер до 0,63 от эталонного значения;

- использование крупных цифровых коммутационных станций емкостью 100000 АЛ снижает стоимость одного номера до 0,46 от эталонного значения.

Напомним, что результаты этих оценок получены по формуле (2.2), которая предложена после обработки небольшого числа проектов. Тем не менее, реальное соотношение цен на цифровое коммутационное оборудование разной емкости будет, по всей видимости, очень близким к приведенным выше оценкам.

Вернемся к модели гипотетической ГТС, введенной в предыдущем параграфе. Рассмотрим инвестиционный цикл [15] для цифровизации этой ГТС. На рисунке 2.5 показан инвестиционный цикл, отражающий четыре этапа модернизации местной телефонной сети. Эти этапы показаны на рисунке 2.3 для первого и второго сценариев цифровизации ГТС. На рисунке 2.5 начальные моменты каждого из четырех этапов обозначены латинскими буквами A, B, C и D соответственно.

Инвестиционный цикл для цифровизации ГТС

Рисунок 2.5

Использование коммутационной станции большой емкости не означает, что Оператор должен приобрести к моменту «А» оборудование в полном объеме. Принципы разработки современных цифровых коммутационных станций учитывают возможность постепенного наращивания функциональных блоков, предназначенных как для подключения новых абонентов, так и для повышения производительности устройств, обрабатывающих трафик. Тем не менее, стоимость цифровой коммутационной станции с максимальной емкостью M номеров, используемой для подключения N абонентов (N < M), всегда будет больше, чем стоимость аналогичного оборудования, для которого величина N является предельным значением числа подключаемых АЛ. Если обратиться к обозначениям, использованным на рисунке 2.5, то это утверждение выражается следующим неравенством: I2A > I1A.

Суммарные инвестиции для реализации первого и второго сценариев обозначены на рисунке 2.5 как S1 и S2 соответственно. Понятно, что эти величины определяются суммой инвестиций на всех этапах модернизации телефонной сети:

S1 = I1A + I1B + I1C + I1D ; S2 = I2A + I2B + I2C + I2D.                                 (2.3)

Ранее было установлено, что инвестиции на модернизацию телефонной сети по второму сценарию будут меньше, чем в том случае, когда Оператор выберет первый сценарий, то есть, S1 > S2. Это означает, что существует некая точка «T», принадлежащая отрезку [A, D], в которой суммарные инвестиции равны для первого и второго сценариев. С точки зрения инвестиционного цикла очень важно знать, где находится эта точка. Значение «T» определяется множеством факторов. Практически, оно является случайной величиной с плотностью распределения f(t), которое задано на отрезке [A, D]. На рисунке 2.6 показаны три примера поведения функции f(t), определяющих наиболее вероятное нахождение точки «T».

Примеры распределения величины “Т”

Рисунок 2.6

Современные методы экономического анализа сценариев, по которым модернизируется телекоммуникационная система, учитывают факторы, весьма существенные для Оператора связи [15, 16]: условия получения банковского кредита, инфляционные процессы, инвестиционный климат и другие. Но реальные условия, в которых Оператору приходится выбирать сценарий для модернизации своей телекоммуникационной системы, часто не укладываются в классические модели экономики. Даже широко известный двухтомник «Экономикс», Кэмпбелла Р. Макконнелла и Стэнли Л. Брю, не охватывает ситуации, могущие вызвать вопросы у Оператора.

Не умаляя важности экономического анализа двух базовых сценариев  цифровизации телефонных сетей, попробуем сформулировать рекомендации практического характера, которые, возможно, будут полезны на этапе принятия Оператором соответствующих административных решений:

- во-первых, целесообразно оценить потенциальный выигрыш от использования цифровых коммутационных станций большой емкости, используя формулу (2.2) или иные соотношения;

- во-вторых, полезно выполнить расчеты инвестиций, приходящиеся на каждый отдельный этап цифровизации телефонной сети, и, просуммировав их по формуле (2.3), вычислить суммарные затраты для каждого сценария;

- в-третьих, определить наиболее вероятное положение точки «Т», в которой затраты по обоим сценариям становятся равными;

- в-четвертых, соотнести полученные результаты с факторами, которые сложно учесть с помощью математических методов (в частности, возможность получения кредита от поставщика телекоммуникационного оборудования, повышение шансов на лидерство на рынке новых услуг и тому подобное).

Общий вывод из анализа двух сценариев цифровизации местной телефонной сети состоит в том, что каждое решение имеет свои достоинства и недостатки. Отличительные особенности первого сценария - минимальные затраты на первом этапе цифровизации сети при максимальной величине суммарных инвестиций. Второй сценарий гарантирует минимальные суммарные инвестиции, но он связан с эффектом, именуемым в экономической литературе [15, 16] “замораживание капитальных вложений”.

В предыдущем параграфе мы договорились о том, что после описания экономических аспектов цифровизации местной телефонной сети будут кратко изложены достоинства и недостатки рассмотренных выше сценариев. Результаты такого анализа - даже в ущерб ряду деталей, иногда весьма существенных, - удобно представлять в табличной форме. Приведенная ниже таблица 2.1 содержит четыре показателя, характеризующие три основных сценария цифровизации местной телефонной сети. Таблица 2.1 отражает субъективное мнение автора, который, кстати, никогда не работал в организациях, занимающихся эксплуатацией или проектированием сетей электросвязи.

Таблица 2.1

Показатели

Первый сценарий

Второй сценарий

Третий сценарий

Сложность проектирования

Минимальная

Максимальная

Средняя

Возможность изменить проект

Минимальная

Минимальная

Максимальная

Стоимость цифро-визации сети

Максимальная

Минимальная

Близка к максимальной

Начальные инвестиции

Минимальные

Максимальные

Близки к максимальным

Этой таблицей завершается описание основных особенностей цифровизации местных телефонных сетей. Изложенные выше соображения связаны с вопросами, которые рассматриваются в трех следующих параграфах. Начнем их анализ с задач, которые возникают в процессе подключения к ТФОП новой группы абонентов.

2.1.3. Подключение к ТФОП новой группы абонентов

Рассматриваемые ниже вопросы связаны со следующей ситуацией: появляется новая группа абонентов, подключение которой к ТФОП целесообразно осуществить за счет установки новой коммутационной станции. Такая задача, как правило, возникает в процессе проведения районной планировки [17], если принимается решение о создании нового массива жилых домов, крупного промышленного центра или иных сооружений на большой территории. Очень важно отметить существенную особенность рассматриваемого варианта - в границах будущего пристанционного участка не существует никаких сооружений, необходимых для построения сети абонентского доступа.

Возникающие в подобных ситуациях задачи достаточно просты с точки зрения проектирования сети абонентского доступа. Соответствующие методы оптимизации уже разработаны [18]. Как правило, легче найти оптимальные решения для сложной системы, которая проектируется, а не находится в эксплуатации.

Сложные проблемы присущи, скорее, практическим аспектам создания сети абонентского доступа при установке новой коммутационной станции. Это объясняются отсутствием готовой инфрастуктуры (кабельной канализации, распределительных шкафов и других технических средств, которые могут быть использованы для подключения абонентов к новой коммутационной станции).

Для дальнейших рассуждений нам понадобится модель гипотетического пристанционного участка. Она приведена на рисунке 2.7. В границах пристанционного участка показаны три проспекта и три улицы, которые находятся на территории новой застройки. Конечно, Оператор, в большинстве случаев, будет решать задачи, касающиеся модернизации эксплуатируемых сетей абонентского доступа. Тем не менее, многие города будут расширяться за счет застройки новых территорий [17]. Поэтому проблемы построения сети абонентского доступа для вновь вводимой МС также актуальны для Операторов ТФОП.

Модель гипотетического пристанционного участка

Рисунок 2.7

Допустим, что проектировщику заранее известны основные исходные данные о сети абонентского доступа. Рассмотрим аспекты использования УПАТС, введя следующие предположения:

- ряд зданий, в которых точно будут расположены УПАТС, заранее известны Оператору, располагающему также информацией о емкости этих станций и оценками трафика;

- потенциальные места размещения новых УПАТС, равно как и их емкость, могут прогнозироваться по косвенным данным - документы районной планировки, тарифная политика, стимулирующая предприятия различных форм собственности к использованию собственных коммутационных станций, и тому подобное;

- несколько УПАТС, места размещения которых и емкость практически невозможно предсказать в процессе проведения проектных работ, появятся после завершения строительства сети абонентского доступа;

- наконец, сеть абонентского доступа должна обеспечивать временное включение в МС беспроводных (Wireless) УПАТС [19], которые могут использоваться при проведении различных выставок, сезонных распродаж, когда необходимо организовать связь для абонентов, работающих в зоне действия МС не постоянно, и в ряде других случаев.

Таким образом, определить все места размещения УПАТС не представляется возможным. Существенно проще решается задача оптимального расположения концентраторов. Естественно, при решении этой оптимизационной задачи необходимо найти структуру сети абонентского доступа с учетом размещения УПАТС, включая те, места размещения которых можно определить весьма достоверно.

На территории пристанционного участка будут, в обозримой перспективе, установлены выносные модули других коммутируемых (вторичных) сетей. В первую очередь начнут монтироваться базовые станции (БС) системы персональной связи, работающей, например, по стандарту Digital Enhanced Cordless Telecommunications (DECT) [19]. Вероятно, выносные модули систем кабельного и интерактивного телевидения также будут размещаться на территории пристанционного участка. Таким образом, в границах сети абонентского доступа появятся дополнительные выносные модули, которые необходимо связать со своими коммутационными станциями или серверами более высокого уровня иерархии.

Модель пристанционного участка, показанная на рисунке 2.8, состоит из МС, трех концентраторов (К1, К2 и К3), двух стационарных и одной беспроводной УПАТС. В границах пристанционного участка также размещаются БС системы персональной связи и центр распределения КТВ.

Модель пристанционного участка для варианта установки новой коммутационной станции

Рисунок 2.8

Аббревиатуры БС, КТВ и WPABX написаны на рисунке 2.8 наклонными буквами. Это сделано для того, чтобы выделить два весьма важных обстоятельства:

- во-первых, все три выносных модуля (БС, WPABX и КТВ) не относятся к традиционным для ГТС и СТС техническим средствам;

- во-вторых, коммерческая эксплуатация этих выносных модулей начнется позже, чем введение концентраторов и стационарных УПАТС.

Сплошными линиями показан фрагмент коммутируемой (телефонной) сети, в границах которого будет осуществляться подключение трех концентраторов и двух УПАТС к МС по радиальной схеме. Пунктирные линии обозначают перемычки между теми площадками, где расположены выносные модули. Совокупность сплошных и пунктирных линий иллюстрирует структуру транспортной сети. Здесь целесообразно сделать еще одно замечание, касающееся проблемы разделения системы абонентского доступа на транспортную (первичную) и коммутируемые (вторичные) сети.

На рисунке 2.9 показаны две плоскости. Транспортная сеть расположена в верхней плоскости. Она состоит из девяти сетевых узлов (СУ); этот термин вводится как перевод выражения “Network Node”, часто используемого в англоязычной литературе по транспортным сетям. Все девять СУ пронумерованы. Нулевой СУ расположен в одном помещении с МС. Аналогично, другие СУ территориально совмещены с выносными модулями коммутируемых (вторичных) сетей.

Транспортная сеть состоит из трех колец; один СУ (под шестым номером) не входит ни в одно из колец. Кольца II и III имеют общий элемент - трассу между нулевым и пятым СУ. Объединение ряда СУ в три кольца и подключение шестого СУ прямым пучком СЛ не следует рассматривать как результат решения задачи оптимального построения транспортной сети. Структура транспортной сети выбрана произвольно.

Транспортная и коммутируемые сети

Рисунок 2.9

Ресурсы транспортной сети предназначены для передачи различной информации. В модели показаны три коммутируемые (вторичные) сети, использующие ресурсы транспортной системы. Фрагмент местной телефонной сети образован МС, ее концентраторами и УПАТС.

Сеть персональной связи (СПС) использует БС, находящуюся на территории пристанционного участка. Эта БС через нулевой СУ (кроссовое оборудование МС) подключается к коммутационной станции СПС. Таким образом, границы пристанционных участков МС и коммутационной станции СПС могут не совпадать. Их территории перекрываются только частично.

Сеть КТВ - в нашей модели - имеет центр распределения программ, расположенный на территории пристанционного участка МС. Но этот центр через кроссовое оборудование МС должен быть соединен со студией КТВ широкополосными каналами. Сеть доступа для КТВ также имеет с пристанционным участком МС разные границы.

Итак, транспортная (первичная) сеть обслуживает трех основных потребителей. Все три коммутируемые (вторичные) сети различаются либо своей структурой, либо используемыми транспортными ресурсами.

Теперь попробуем сформулировать задачи, которые должны быть решены в процессе планирования сети абонентского доступа при введении новой коммутационной станции. Эти задачи, как правило, связаны между собой. Тем не менее, их можно разделить условно, что позволяет выделить следующие аспекты планирования сети абонентского доступа:

- во-первых, нахождение оптимального места (или ряда точек) размещения новой коммутационной станции;

- во-вторых, поиск оптимальных мест размещения выносных модулей, включая вероятные места размещения подобного оборудования, для всех коммутируемых (вторичных) сетей;

- в-третьих, оценка требований (для всех коммутируемых сетей) к ресурсам транспортной сети, необходимым на отдельных этапах прогнозируемого периода;

- в-четвертых, нахождение оптимальной структуры транспортной сети и разработка эффективной стратегии ее развития.

2.1.4. Замена аналоговой АТС на цифровую коммутационную станцию

Процесс замены аналоговой АТС на цифровую коммутационную станцию можно рассматривать с двух точек зрения. Во-первых, результатом этого процесса может стать просто замена старого коммутационного оборудования с определенными изменениями в сети абонентского доступа. Именно такой подход изложен в данном параграфе. Во-вторых, этот процесс может стать первым этапом при замене нескольких аналоговых АТС одной цифровой коммутационной станцией. Этот сценарий рассматривается в следующем параграфе. Таким образом, материал, содержащийся в параграфе 2.1.4, имеет самостоятельное значение. Одновременно, предлагаемые решения представляют собой определенный фундамент для анализа следующего варианта (параграф 2.1.5) использования цифровой коммутационной станции - замены нескольких аналоговых АТС.

Когда целесообразно заменять цифровой коммутационной станцией одну аналоговую АТС? Ответ на этот вопрос требует, прежде всего, выбрать тот критерий, который позволяет принимать соответствующее решение. В качестве такого критерия целесообразно использовать емкость устанавливаемой цифровой коммутационной станции (с учетом ее расширения при подключении новых абонентов). Но выбору критерия предшествует еще одна проблема, которую необходимо обсудить в первую очередь. С методологической точки зрения эта проблема служит хорошим примером «отрыва» теории планирования сети от практики ее создания.

Рассмотрим модель ГТС, представленную на рисунке 2.10. Эта модель объясняет сформулированные в предыдущем абзаце положения. На рисунке показаны два этапа развития ГТС, состоящей из четырех коммутационных станций. Момент ввода первой цифровой коммутационной станции, именуемой далее МС1, соответствует началу модернизации ГТС. Время ввода МС1 обозначено на рисунке 2.10 как t=0. Продолжительность эксплуатации всех аналоговых станций к моменту t=0 указано для каждой АТС курсивом.

Модель ГТС при замене одной аналоговой АТС

Рисунок 2.10

Особенность рассматриваемой модели состоит в том, что АТС1, которая уже проработала 25 лет, должна быть заменена. Три другие АТС были установлены недавно. Предполагается, что АТС2 и АТС3 работают семь лет, а АТС4 - пять лет, то есть, три аналоговые АТС еще могут работать, как минимум, десять лет. В этой ситуации никакой критерий, формально определяющий оптимальную емкость цифровой коммутационной станции, не может быть использован в реальной практике планирования сети.

Вернемся к критерию оптимальности рассматриваемого сценария. Прежде всего, целесообразно оценить емкость АТС, используемых в местных телефонных сетях. Необходимые для таких оценок данные содержатся в статистических отчетах, подготавливаемых Государственным Комитетом Российской Федерации по связи и информатизации.

К началу 1996 года средняя емкость координатной АТС, используемой в ГТС, составила 2546 номеров. Эта же величина для цифровой коммутационной станции равна 4846 номеров. Для специалистов, занимающихся теоретическими аспектами планирования местных телефонных сетей, такие величины, мягко говоря, вызывают удивление. Мы (мало сведущие в реальной практике построения местных телефонных сетей) привыкли считать, что типовая емкость городской АТС, как декадно-шаговой, так и координатной, составляет примерно 10000 номеров.

Чем же вызвано такое расхождение теории и практики? Величина средней емкости координатных АТС рассчитана по всем городам. Следовательно, в разряд ГТС попали и сети маленьких городов, емкость которых и определяет столь малое, на первый взгляд, значение средней емкости городской АТС. Вероятно, при ранжировании ГТС по емкости можно ожидать большее значение средней емкости координатной АТС для крупных сетей. В отчете Санкт-Петербургской ГТС за 1996 год содержатся статистические данные, позволяющие оценить среднюю емкость координатной АТС величиной 8623 номера. Это подтверждает гипотезу об использовании в крупных городах коммутационных станций большей емкости, чем по России в целом.

Итак, мы нашли логическое объяснение весьма низкой средней емкости городской координатной АТС. Иная картина складывается с величиной 4846 номеров, определяющей математическое ожидание цифровой коммутационной станции. Для Санкт-Петербургской ГТС этот показатель несколько выше - 6668 номеров. Для окончательных выводов необходимо проанализировать ряд проектных решений. Тем не менее, возникает ощущение, что цифровое коммутационное оборудование на значительной части ГТС внедряется по весьма неэффективным сценариям.

Средняя емкость координатной АТС, используемой в СТС, составила - также к началу 1996 года - 140 номеров. Для цифровой коммутационной станции эта величина заметно выше - 318 номеров. Первая величина очень хорошо согласуется с той областью значений емкости сельских АТС, которой оперируют специалисты по планированию местных телефонных сетей. А вторая величина также внушает некоторые, но не столь обоснованные, как для ГТС, опасения. Конечно, окончательные выводы могут быть сделаны только после анализа соответствующих проектных решений.

Если численные оценки, приведенные выше, достоверны, то замена одной аналоговой АТС на цифровую коммутационную станцию будет, как правило, очень плохим с экономической точки зрения решением. Об этом говорит приведенный на рисунке 2.4 график. Но в ситуациях, модель которых представлена рисунком 2.10, такое решение становится вынужденным.

Как повысить эффективность цифровой коммутационной станции небольшой емкости?

Если станция устанавливается в строгом соответствии с рекомендациями, утвержденными Администрацией связи [20], то пучки СЛ, связывающие ее с аналоговыми АТС, образуются по каналам ЦСП. На рисунке 2.10 пучки СЛ от МС1 к АТС2, АТС3 и АТС4 отмечены квадратиками; обычно таким способом маркируются цифровые каналы и тракты. В этом случае в кроссах аналоговых АТС можно подключать различные выносные модули к МС1 через цифровые тракты транспортной сети. Это означает, что к МС1 могут быть подключены цифровые УПАТС, мультиплексоры ЦСИО [21] и другие выносные модули, находящиеся в зоне обслуживания аналоговых АТС. На рисунке 2.11 показана соответствующая модель ГТС.

Подключение выносных модулей из разных зон обслуживания

Рисунок 2.11

В левой части рисунка 2.11 показаны зоны обслуживания трех аналоговых АТС. В границах этих зон обслуживания находятся три УПАТС и два мультиплексора ЦСИО. В кроссовом оборудовании аналоговых АТС осуществляется подключение этих пяти выносных модулей непосредственно к МС1. Структура полученной коммутируемой сети показана в правой части рисунка 2.11, иллюстрирующего предлагаемое решение. Подключение выносных модулей, расположенных в зонах обслуживания аналоговых АТС, к цифровой коммутационной станции - весьма эффективное решение с учетом следующих аргументов:

- расширяется ТФОП за счет новых групп абонентов, которые ранее не могли включиться в аналоговые АТС по каким либо причинам (как правило, такая ситуация возникает из ограниченной емкости электромеханических коммутационных станций);

- освобождается номерная емкость в зонах обслуживания аналоговых АТС, если УПАТС, подключенные ранее к этим типам коммутационных станций, переключаются в МС1;

- для абонентов УПАТС и выносных модулей, расположенных в зонах обслуживания аналоговых АТС, становятся доступными практически все виды услуг, поддерживаемых аппаратно-программными средствами МС1.

Итак, вариант замены аналоговой АТС на цифровую коммутационную станцию может оказаться вынужденным решением Оператора. Но его отличие от сценария, рассмотренного в следующем параграфе, заключается, пожалуй, только в длительности промежутка времени между заменой первой и второй аналоговых АТС. Это утверждение станет ясней для читателей, которые прочтут и следующий параграф раздела 2.1.

2.1.5. Замена нескольких АТС одной коммутационной станцией

Этот сценарий использования цифрового коммутационного оборудования может служить весьма интересным примером перехода от районированной ГТС к нерайонированной сети. Развитие ГТС на базе аналоговых АТС подразумевало переход от нерайонированной сети к районированной. Такая трансформация ГТС происходила при ее емкости свыше 8000 номеров [13]. При замене аналоговых АТС на цифровые коммутационные станции ситуация существенно изменяется. Экономически выгодно использовать цифровые коммутационные станции большой емкости. Емкость сети, начиная с которой целесообразно проводить районирование сети, возрастает, практически, на порядок [9 - 12].

Таким образом, для некоторых ГТС история развития будет представлять пример известного постулата: “Все возвращается на круги своя”. Попробуем пояснить это утверждение с помощью рисунка 2.12, отражающего процесс модернизации гипотетической ГТС.

История развития гипотетической ГТС

Рисунок 2.12

Точка t0 соответствует дате ввода первой телефонной станции, когда на территории города была создана нерайонированная ГТС. В верхней части рисунка 2.12 этот факт отражен в виде скачкообразного роста монтированной емкости ГТС. В нижней части рисунка также изображена ступенчатая функция. Эта функция показывает, что на отрезке (t0, t1) в данной ГТС используется только одна телефонная станция.

В момент t1 происходит установка второй АТС, что, как известно [13], приводит к преобразованию нерайонированной ГТС в районированную сеть. В точке t2 устанавливается третья АТС, связанная с двумя другими телефонными станциями по принципу “каждая с каждой”. Таким образом, до момента t3 функционируют три АТС, причем их суммарная емкость составляет около 50% от уровня насыщения ГТС основными телефонными аппаратами.

Допустим, что к моменту t3 необходимо ввести новую АТС, но первая из установленных ранее станций уже должна демонтироваться из-за физического износа коммутационного оборудования. Итак, Оператор ТФОП заменяет аналоговую АТС на цифровую коммутационную станцию. Это означает, что общее число телефонных станций не изменяется, но увеличивается емкость ГТС.

Предположим, что точка t4 определяет момент времени, когда Оператор должен решить две задачи. Во-первых, требуется заменять вторую из введенных когда-то аналоговых станций. Во-вторых, к ТФОП необходимо подключить группу новых абонентов. Решить эти две задачи можно следующим образом:

- в помещении демонтируемой АТС устанавливается выносной модуль (в частности, - концентратор), который включается в цифровую коммутационную станцию;

- новые группы абонентов подключаются к концентраторам или иным выносным модулям цифровой коммутационной станции, устанавливаемым в любой точке ГТС.

Таким образом, в точке t4 происходит расширение емкости ГТС при сокращении числа коммутационных станций, работающих в сети. До точки t5 ГТС остается районированной телефонной сетью. Но после этого момента демонтируется последняя аналоговая АТС, ее абоненты переключаются в выносные модули цифровой коммутационной станции, а ГТС становится нерайонированной.

Дальнейшая судьба структуры ГТС зависит от соотношения между двумя величинами. Первая величина (Msat) - прогнозируемый уровень насыщения данной ГТС основными телефонными аппаратами. Вторая величина (Nmax) - максимальная емкость цифровой коммутационной станции, используемой для развития данной ГТС. Если справедливо условие Nmax > Msat, то ГТС останется нерайонированной сетью. В противном случае (возможно, что в отдаленной перспективе) в ГТС будет установлена еще одна цифровая коммутационная станция.

Здесь необходимо сделать одно замечание. Когда монтированная емкость ГТС будет приближаться к уровню Nmax, могут появиться иные способы подключения абонентов к телекоммуникационной системе. В частности, один из весьма вероятных сценариев развития сетей электросвязи - применение технологии АТМ [4, 22]. С точки зрения проблем, порожденных развитием сетей абонентского доступа, этот вопрос рассматривается в разделе 2.4.

Рассмотрим процесс замены нескольких аналоговых АТС одной цифровой коммутационной станцией на примере модели гипотетической ГТС. Структура, приведенная на рисунке 2.10, будет, по всей видимости, самой удачной моделью, так как позволит нам понять сходство и различие между сценариями цифровизации ГТС, которые рассматриваются в параграфах 2.1.4 и 2.1.5 соответственно. Сохраним для модели все основные предположения, введенные ранее, за исключением одного, касающегося целесообразности длительной эксплуатации аналоговых АТС.

Процесс цифровизации ГТС начинается с замены аналоговой АТС1 на цифровую МС1. Это означает, что рисунок 2.10 полностью соответствует первой фазе модернизации ГТС. Исключение составляют численные значения сроков эксплуатации аналоговых АТС. На рисунке 2.13, который иллюстрирует процесс замены остальных аналоговых АТС выносными модулями МС1, “возраст” коммутационных станций не указывается. Рассматриваемый ниже сценарий основан на принципах, приведенных в [4, 23].

Замена нескольких АТС одной коммутационной станцией

Рисунок 2.13

Этап I, как мы договорились ранее, определяет замену аналоговой АТС на цифровую коммутационную станцию. В дальнейшем, эта цифровая станция (МС1) будет расширяться за счет подключения выносных модулей, размещаемых, как правило, в помещении демонтируемых аналоговых АТС. Следующий шаг (этап II) представляет собой замену АТС3 на концентратор, которому присвоен номер “1”. На этом и следующих этапах развития ГТС мы будем считать, что роль выносных модулей МС1 играют концентраторы.

Подчеркнем одну существенную деталь второго этапа развития ГТС: между концентратором и аналоговыми АТС нет прямых пучков СЛ. Но это не означает, что могут ухудшиться показатели качества обслуживания вызовов или надежность сети. Если в процессе проектирования транспортной сети не были допущены существенные просчеты, то основные показатели функционирования ГТС будут, по крайней мере, не хуже, чем те, которые были ей присущи до введения цифрового коммутационного оборудования.

На этапе III аналоговая АТС2 заменяется концентратором К2. В результате, в сети остается только одна аналоговая АТС. Но ГТС еще принадлежит к классу районированных сетей. Наконец, демонтируется последняя аналоговая АТС - этап IV. На рисунке 2.13 показана ситуация, когда эта АТС заменяется двумя концентраторами - К3 и К4. Теперь рассматриваемая ГТС становится нерайонированной.

Географические границы сети абонентского доступа заметно расширяются. Это, конечно, стимулирует поиск новых сетевых решений, направленных на экономичное построение данного элемента телекоммуникационной системы. Строго говоря, такое утверждение справедливо и для всех других сценариев, объединенных разделом 2.1 “Подключение абонентов к цифровым телефонным станциям”.

Некая общность рассмотренных в разделе 2.1 вариантов позволяет разработать ряд рекомендаций, справедливых для сетей абонентского доступа при различных стратегиях внедрения цифрового коммутационного оборудования. В параграфе 2.1.6 рассматривается обобщенная модель сети абонентского доступа.

2.1.6. Несколько общих замечаний к разделу 2.1

В предыдущих параграфах раздела 2.1 были рассмотрены возможные сценарии построения сети абонентского доступа для различных вариантов цифровизации местной телефонной сети. Если опустить некоторые второстепенные детали, то можно ввести общую модель перспективной сети абонентского доступа. Рассмотрим две плоскости такой модели: транспортная сеть и телефонная сеть. Эти две плоскости показаны на рисунках 2.14 и 2.15 соответственно.

Структура транспортной сети

Рисунок 2.14

Кроссовое оборудование МС может рассматриваться как центр транспортной сети, к которому подключаются все десять кроссов выносных концентраторов, мультиплексоров и УПАТС. На рисунке 2.14 представлены следующие варианты подключения кроссов пяти концентраторов, четырех УПАТС и одного мультиплексора:

- кольцевая структура, в состав которой входит кросс МС (например, кроссы К1, К2 и МС);

- кольцевая структура, элементы которой соединяются с кроссом МС через другое кольцо (кроссы УПАТС1 и УПАТС2, подключаемые к кроссу первого концентратора);

- прямой пучок СЛ (например, к кроссу третьего концентратора), который в перспективе “войдет” в состав кольца, что показано пунктирной линией;

- прямой пучок СЛ (между кроссами МС и УПАТС3), который, в силу ряда причин, не может быть введен в состав какого-либо кольца.

Методы выбора оптимальной структуры транспортной сети мы рассматривать не будем. В этом параграфе мне бы хотелось ограничиться только одним вопросом - как связаны между собой структуры транспортной и телефонной сетей? Обратимся к рисунку 2.15, который содержит те же десять выносных модулей.

Структура телефонной сети

Рисунок 2.15

В границах зоны прямого питания все АЛ непосредственно включаются в абонентские комплекты МС. Аналогичная структура включения АЛ используется на участке терминал - абонентский комплект выносного модуля (концентратора, мультиплексора или УПАТС). Сами выносные модули могут соединяться с МС непосредственно (радиальная схема) или через транзитное оборудование (радиально-узловая схема).

Все выносные модули, кроме УПАТС1, включены в МС по радиальной схеме. Возможность реализации заданной структуры телефонной сети обеспечивается ЦКУ и МВК транспортной сети. Эти элементы транспортной сети выполняют ряд важных функций. В их перечень входит, в частности, сопряжение различных сред распространения сигналов. В точках перехода от ОК к кабелю с медными жилами может устанавливаться оборудование xDSL, позволяющее передавать информацию с высокой скоростью без замены всех эксплуатируемых линейных сооружений.

Рисунок 2.16 иллюстрирует основные варианты организации тракта передачи информации на участке между терминальным оборудованием и кроссом цифровой коммутационной станции.

Структура тракта передачи информации

Рисунок 2.16

Вариант (а) может считаться оптимальным решением для подключения к кроссу коммутационной станции терминалов, расположенных в зоне прямого питания, то есть на расстоянии нескольких сотен метров. На рисунке 2.16 для варианта (а) показано подключение телефонных аппаратов. Это не исключает использования соответствующих АЛ для передачи факсимильных сообщений и данных через модем.

Варианты (б) и (в) иллюстрируют две возможности использования технологий FTTC, FTTR - доведение ОК до ШР или удаленного модуля. С точки зрения вариантов (б) и (в) обе технологии равнозначны. В обоих случаях выполняется преобразование оптического сигнала в электрический (обозначение o/e - аббревиатура от слов “optical/electrical”). На этом сходство вариантов (б) и (в) заканчивается.

Вариант (б) предназначен для подключения телефонных аппаратов. Он очень похож на вариант (а), то есть также позволяет использовать АЛ для передачи факсимильных сообщений и данных через модем. Вариант (в) предназначен для решения двух задач. Во-первых, обеспечивается подключение телефонного аппарата к коммутационной станции. Во-вторых, создается тракт передачи цифровой информации за счет использования аппаратуры ADSL. На рисунке 2.16 показан только фрагмент тракта передачи цифровой информации от терминала до кросса. Через кроссовое оборудование может быть установлен тракт до встречного терминала или сервера.

Варианты (г) и (д) иллюстрируют две возможности использования технологий FTTO, FTTH - доведение ОК до помещения офиса или жилого дома. Варианты (б) и (г) очень схожи. Различие состоит в том, что та часть АЛ, которая организована по двухпроводной физической цепи, в варианте (г) будет, в среднем, существенно короче. Это справедливо и для варианта (д), что позволяет, при необходимости, использовать аппаратуру VDSL, которая обеспечивает очень высокую скорость передачи цифровой информации.

Вариант (е) показывает возможность подключения абонентов с помощью беспроводных средств, в частности, оборудования многостанционного доступа. Подробнее аспекты применения различных беспроводных технологий в сетях абонентского доступа изложены в разделе 2.5.

Модели, показанные на рисунках 2.14, 2.15 и 2.16, универсальны для сетей абонентского доступа, создаваемых при различных сценариях цифровизации местных телефонных сетей. Принципы построения каждой конкретной сети абонентского доступа выбираются, в конечном счете, Оператором, который должен учитывать множество факторов. Мне бы хотелось обратить внимание специалистов, принимающих соответствующие решения, на технико-экономические особенности различных сценариев, которые могут использоваться при создании и модернизации сетей абонентского доступа. Для сравнения этих сценариев предлагается нечто подобное алгоритму, приведенному на рисунке 2.17.

Сравнение сценариев создания сетей абонентского доступа

Рисунок 2.17

Давайте, для начала, вспомним рисунок 2.1, приведенный на первых страницах второй главы. Основное назначение этой иллюстрации состоит в том, чтобы предупредить Оператора ТФОП о вероятном снижении доли доходов, получаемых за счет услуг телефонной связи. Ромб “Расширение спектра услуг” на рисунке 2.17 возвращает нас к этой, весьма сложной для Оператора, задаче. Ее решение, во многом, определяется финансовыми возможностями Оператора и конкуренцией на рынке телекоммуникационных услуг.

Если Оператор выбирает сценарий, связанный с введением новых услуг, он должен принимать решения, подразумевающие возможность существенного расширения пропускной способности сети абонентского доступа. В противном случае, Оператор может планировать сеть абонентского доступа без заметного увеличения ее пропускной способности. Следует отметить, что оба сценария приводят к одной и той же задаче: сохранять или изменять границы пристанционного участка?

На рисунке 2.17 указаны вероятности соответствующих решений. Для левой ветки (решение, связанное с расширением пропускной способности сети доступа) с вероятностью p1 будут изменены границы пристанционного участка. С вероятностью p2 = 1 - p1 будет принято решение, которое не связано с изменением границ пристанционного участка. Это же решение, для правой ветки, принимается с вероятностью q2. Изменению границ пристанционного участка соответствует вероятность q1 = 1 - q2.

Изменение границ пристанционного участка связано, более всего, с ростом емкости устанавливаемых цифровых коммутационных станций. Тенденция повышения емкости цифровых коммутационных станций производит сильное впечатление. Например, разработанная известной компанией Siemens AG система коммутации EWSD позволяет создавать МС емкостью до 600000 номеров [24]! Я бы очень хотел обратить внимание на эту величину тех Операторов и специалистов по планированию местных сетей, которые “видят” дальнейшее развитие ГТС как процесс замены аналоговых АТС на цифровые коммутационные станции такой же емкости, то есть порядка 10000 номеров.

Заманчиво, конечно, оценить величины pi и qi. Давайте исходить из того, что большинство Операторов примет решения, направленные на использование цифровых коммутационных станций большой емкости. Тогда: p1 > p2 и q1 > q2. Применение цифровых коммутационных станций большой емкости, по всей видимости, может рассматриваться как решающий фактор в вопросе о границах пристанционного участка. Это дает основание для следующей гипотезы: pi» qi.

В нижней части рисунка 2.17 перечислены основные технологические решения, касающиеся структуры сети абонентского доступа. Выделены три важных аспекта модернизации этой сети. Рассмотрим их, отталкиваясь от вышестоящего уровня.

Если изменяются границы пристанционного участка, то могут - с разными вероятностями - разыгрываться три сценария:

- создание системы кольцевых структур на базе ОК, что не исключает использование технологий типа FTTOpt для оптического волокна и xDSL для медных жил (вероятность такого решения обозначим через r1);

- модернизация сети абонентского доступа с использованием технологий типа FTTOpt и xDSL, но без реализации кольцевых структур (вероятность такого решения обозначим через r2);

- сохранение структуры существующей сети, основанной на кабелях с медными жилами (вероятность такого решения обозначим через r3).

Эти же три сценария могут рассматриваться и в том случае, если Оператор решает сохранить границы пристанционного участка. Однако вероятность выбора каждого сценария будет иной. На рисунке 2.17 соответствующие вероятности обозначены через s1, s2 и s3 соответственно.

Создание кольцевых структур на базе существующих линейно-кабельных сооружений - очень сложная задача. Вернемся к моделям, введенным в параграфе 2.1.3 “Подключение к ТФОП новой группы абонентов”. Образование колец, показанное, в частности, на рисунке 2.8 пунктирными линиями, подразумевает - применительно к существующим принципам проектирования абонентских сетей - образование линий межшкафной связи. Такие линии (соответствующий пример приведен на рисунке 1.2 в первой главе) могут быть созданы, чаще всего, в результате прокладки новой кабельной канализации.

Подобные работы могут быть связаны с большими затратами. Кроме того, их проведение может оказаться просто невозможным из-за ограничений, отличных от финансовых проблем. В качестве характерного примера можно назвать запрет на строительные работы в исторической части города. Тем не менее, создание кольцевых структур может быть выполнено за счет использования линий межшкафной связи, реализуемых на базе беспроводных технологий. В разделе 2.5 эта возможность будет рассмотрена более подробно.

Итак, создание кольцевых структур в сети абонентского доступа, в принципе, возможно. Однако этот процесс может начаться после проведения ряда этапов в общем цикле модернизации сети абонентского доступа. Это означает, что вероятности r1 и s1 не велики. Очевидно также, что r1 > s1.

Технологии типа FTTOpt и, особенно, xDSL уже апробированы некоторыми Операторами. Модернизация сети абонентского доступа начнется, в большинстве случаев, именно на базе этих технологий. Поэтому вероятности r2 и s2 будут превосходить другие значения ri и si.

Существующая структура абонентской сети может сохранится, по всей видимости, в том случае, если не меняются границы пристанционного участка. Таким образом, величина s3 может иметь тот же порядок, что и вероятность s2. При изменении границ пристанционного участка ситуация изменяется кардинально. Вероятность r3 близка к нулю, то есть r3 << s3.

Конечно, все комментарии к рисунку 2.17, включая оценки вероятностей, относятся к некой гипотетической сети абонентского доступа. В каждом конкретном случае должна учитываться специфика не только модернизируемой сети абонентского доступа, но и той ГТС или СТС, в которой она находится.

Раздел 2.1, в целом, содержит важные системные положения, на которых основаны результаты, изложенные в других разделах второй главы. Мне сложно оценить, насколько удалось решить поставленную задачу, но зато я хорошо понял фразу замечательного философа Мераба Мамардашвили: “Нет дела труднее и важнее, чем держать мысль”.

2.2. Варианты организации сети доступа в узкополосной ЦСИО

2.2.1. Общие принципы интегрального обслуживания

Прилагательное «узкополосная», применительно к ЦСИО, указывает на то, что скорость передачи информации ограничена величиной 2,048 Мбит/с. Как правило, для узкополосной ЦСИО [25] рассматриваются два интерфейса пользователь-сеть: 2B+D и 30B+D. Канал типа «B» обеспечивает передачу информации со скоростью 64 кбит/с. В отечественной технической литературе его иногда называют основным цифровым каналом (ОЦК). Канал типа «D» является служебным, используемым, в основном, для сигнализации. Для интерфейса 2B+D скорость передачи по D-каналу составляет 16 кбит/с. Интерфейс 30B+D предусматривает скорость обмена служебной информацией 64 кбит/с.

Концепция ЦСИО, с момента своего возникновения и до наших дней, претерпела значительные изменения. Мне кажется, что наиболее интересные изменения можно было наблюдать в трансформации тех суждений, которые высказывали специалисты на перспективы создания ЦСИО в России. Этот процесс начинался с явной переоценки возможности ЦСИО (к чему и я, без злого умысла, приложил определенные усилия), сменился невероятным пессимизмом, но, в результате, определил нишу, которую интегральное обслуживание может занять на рынке телекоммуникационных услуг. Рассмотрим рисунок 2.18, основанный на материалах монографии [26], который поможет определить наиболее вероятные приложения узкополосной ЦСИО с точки зрения скоростей обмена информацией, принятых для поддержки ряда телекоммуникационных услуг.

Возможности узкополосной ЦСИО по поддержке некоторых телекоммуникационных услуг

Рисунок 2.18

Рисунок 2.18 позволяет сделать некоторые общие выводы относительно потенциальных возможностей ЦСИО:

- видеоинформация представлена, в основном, факсимильными сообщениями, передаваемыми терминалами 4-ой группы в классификации МСЭ [27];

- практически все услуги по обмену речевой и звуковой информацией могут быть предложены пользователям ЦСИО;

- услуги по обмену данными, как правило, удовлетворяют требованиям, которые характерны для небольших предприятий;

- интерфейсы 2B+D и 30B+D могут обеспечить эффективный доступ в Internet  большой группе пользователей.

Итак, потенциальный рынок услуг, которые могут поддерживаться узкополосной ЦСИО, достаточно обширен. С другой стороны, те же самые услуги могут быть предоставлены вне рамок ЦСИО. Но эта проблема, несомненно важная, не входит в круг вопросов, рассматриваемых в настоящей монографии.

Вернемся к аспектам сети абонентского доступа. И постараемся не употреблять в данном параграфе это словосочетание, так как слово доступ (access) в контексте понятий, принятых в ЦСИО, имеет иное смысловое значение. Рекомендации МСЭ по узкополосной ЦСИО предусматривают возможность частичного использования существующих абонентских кабелей. Для того, чтобы определить область возможного применения существующих АЛ, рассмотрим рисунок 2.19 - пример подключения пользовательских терминалов к коммутационной станции ЦСИО.

Модель абонентского участка в узкополосной ЦСИО

Рисунок 2.19

До комментариев к рисунку 2.19 необходимо сделать одно существенное замечание относительно связи между ТФОП и ЦСИО. Введение услуг ЦСИО не значит, что Оператор должен создавать новую сеть связи. Задача Оператора заключается во введении ряда новых аппаратно-программных модулей в состав цифровой коммутационной станции и в оборудование пользователя. ЦСИО, в этот смысле, может рассматриваться как существенная модернизация некоторого фрагмента ТФОП.

В помещении пользователя устанавливается оборудование, назначение которого лучше всего представляют функциональные блоки, показанные в верхней части рисунка 2.19. В рекомендациях МСЭ серии I принято выделять пять основных функциональных блоков и, соответственно, четыре интерфейса. Если читатель интересуется принципами работы ЦСИО, то лучше всего обратиться к рекомендациям МСЭ серии I или к монографиям и статьям, которые посвящены главным аспектам интегрального обслуживания. Смысл этой ремарки состоит в том, что далее будут введены только самые общие понятия, необходимые нам для изложения вопросов, рассматриваемых в монографии.

В ЦСИО могут использоваться две основные группы оконечных устройств. Терминальное оборудование первого типа TE1 (Terminal Equipment) отвечает всем требованиям ЦСИО по электрическим параметрам, протоколам сигнализации и иным характеристикам. Терминалы TE1 подключаются к четырехпроводному S-интерфейсу, характеристики которого стандартизованы в рекомендациях МСЭ серии I.

Все остальные виды терминалов, разработанных на основе других стандартов (или каких-либо специфических требований) образуют группу TE2. Их подключение к S-интерфейсу осуществляется через терминальный адаптер TA (Terminal Adapter). Интерфейс между TE2 и TA обозначается буквой R. Если в качестве TE2 используется стандартное оконечное оборудование данных, то параметры R-интерфейса будут определяться рекомендациями МСЭ серий V и X. При подключении факсимильного аппарата, отвечающего международным стандартам, параметры R-интерфейса будут определяться рекомендациям МСЭ серии T и так далее.

В ЦСИО границей между сетью и пользователем считается T-интерфейс. Между точками S и T размещается функциональный блок сетевого окончания NT2 (Network Termination), выполняющий, при необходимости, операции мультиплексирования и концентрации. Процедуры передачи цифрового сигнала по линии обеспечивает сетевое окончание NT1. Часто функциональные блоки NT1 и NT2 реализуются в составе одного модуля. В этом случае они могут именоваться как NT12, а иногда - просто NT.

Через U-интерфейс сетевое окончание NT1 взаимодействует с линейным окончанием LT (Line Termination). Для интерфейса пользователь-сеть 2B+D (именно этот вариант показан на рисунке 2.19) обычно используется двухпроводная физическая цепь, то есть через U-интерфейс осуществляется двухсторонняя (дуплексная) передача цифровых сигналов. Для интерфейса пользователь-сеть 30B+D обычно используют тракт первичной ЦСП. Четырехпроводный V-интерфейс служит для сопряжения LT со станционным окончанием ET (Exchange Termination).

Приведенное выше описание функциональных блоков и интерфейсов не совсем удобно с практической точки зрения. Обратимся к нижней части рисунка 2.19, где показан один из возможных вариантов реализации функциональных блоков и интерфейсов в конкретном оборудовании. Цифровой телефонный аппарат (ЦТА) может, в частности, содержать:

- терминал TE1, обеспечивающий качественную передачу речи в цифровой форме;

- терминальный адаптер TA, поддерживающий R-интерфейс типа RS232 для подключения персонального компьютера (ПК);

- сетевое окончание NT12 для реализации U-интерфейса с целью обмена цифровыми сигналами с линейным окончанием LT.

В предложенной модели не используются четырехпроводные линии. Это не означает, что абонентская проводка, служившая ранее для подключения обычного телефона к ТФОП, может применяться в ЦСИО. Между розеткой и коробкой обычно используется однопарные телефонные распределительные провода типа ТРВ или ТРП [28], именуемые на связистском сленге “лапшой”. Электрические характеристики этих проводов не гарантируют приемлемое качество при передаче цифровых сигналов, то есть необходимо заменить линейно-кабельные сооружения между розеткой и коробкой.

Этот факт, в общем случае, - верхушка айсберга, именуемого сетью в помещении пользователя. Для ЦСИО, но в еще большей степени для других целей, целесообразно строить структурированные кабельные системы (СКС). Принципы создания СКС не входят в перечень вопросов, рассматриваемых в данной монографии. Если читатель захочет получить подробную информацию по СКС, он без особого труда найдет ряд публикаций в журналах по электросвязи. Мне показалось, что достаточно подробно основные проблемы создания СКС отражены в цикле из трех статей, написанных Джеффи Ньюманом [29 - 31].

Итак, между коробкой и кроссом коммутационной станции (для интерфейса пользователь-сеть со структурой доступа 2B+D) может быть использована существующая двухпроводная АЛ. В кабелях связи широко применяется скрутка отдельных пар и их групп [28]. По этой причине - чаще всего в литературе, переведенной с английского языка, - АЛ называют витой парой (twisted pair). Между коробкой и кроссом АЛ может проходить через один или более ШР. Вводно-коммутационные устройства, входящие в состав ШР, могут ухудшать параметры АЛ с точки зрения ее использования в ЦСИО. Этот вопрос должен внимательно изучаться в каждом конкретном случае организации U-интерфейса.

Рассмотрим рисунок 2.20, на котором показаны три варианта включения терминалов ЦСИО. Эти варианты, с некоторыми несущественными упрощениями, заимствованы из [26].

Примеры подключения терминалов ЦСИО

Рисунок 2.20

Вариант (а) иллюстрирует включение нескольких терминалов к объединенному блоку NT2 + NT1 по схеме “звезда”. Типичный пример подобного решения - подключение терминалов к УПАТС, поддерживающей функции ЦСИО. В приведенной схеме отсутствует T-интерфейс [26]. В некоторых публикациях, для подобных структур, вводят обозначение интерфейса в таком виде: S/T.

Вариант (б) служит примером подключения к NT1 одного терминала по схеме “точка-точка”. На практике такое решение может применяться, в частности, для включения в ЦСИО терминала Multimedia [32]. Вариант (в) показывает возможность подключения к S-интерфейсу до восьми терминалов за счет использования короткой пассивной шины (Short Passive Bus).

Для всех вариантов подключения терминалов ЦСИО существует ряд проблем, которые не рассматриваются международными или национальными организациями в области телекоммуникационных стандартов. К таким проблемам относятся следующие три вопроса:

- как организовать U-интерфейс, если характеристики существующей абонентской сети не позволяют передавать по физической цепи цифровые сигналы?

- куда и как включить терминалы ЦСИО, расположенные в зоне обслуживания аналоговой АТС или цифровой коммутационной станции, которая не поддерживает услуги интегрального обслуживания?

- как оптимально ввести услуги ЦСИО с учетом процесса цифровизации ТФОП?

Разработка рекомендаций, способствующих решению этих трех проблем составляет главную задачу раздела 2.2. Это второе объяснение эпиграфа “Внутри каждой большой задачи сидит маленькая, пытающаяся пробиться наружу” - три вопроса, весьма важных для Оператора, которые не сразу удается разглядеть за общими принципами ЦСИО, существенно отличающимися от классической телефонной сети. А первое объяснение выбранного эпиграфа состоит в том, что ЦСИО - в определенном смысле - “сидела” в чреве ТФОП, но постепенно отвоевывает свое место на рынке телекоммуникационных технологий.

2.2.2. Рекомендации по созданию сети доступа в ЦСИО

2.2.2.1. Проблемы организации U-интерфейса

Все возможные варианты реализация U-интерфейса целесообразно разделить на две группы. В первую группу входят решения, ориентированные на интерфейс пользователь-сеть со структурой доступа 2B+D. Вторую группу образуют те варианты, которые могут использоваться для структуры доступа 30B+D. Начнем анализ вероятных проблем и изложение путей их решения с интерфейса пользователь-сеть со структурой доступа 2B+D. Прежде всего, рассмотрим показанную на рисунке 2.21 модель, которая иллюстрирует два варианта построения АЛ.

Два варианта построения АЛ

Рисунок 2.21

Вариант (а) подразумевает использование жил кабеля одного диаметра (d1). В период строительства сети доступа обычно прокладываются абонентские кабели, имеющие жилы одного диаметра. При проведении ремонтных работ - в памятный, специалистам со стажем, период дефицита кабельной продукции - использовались те средства, которые можно было получить. В результате достаточно часто АЛ образовывались за счет сочленения жил кабеля разного диаметра (d1 и d2), что и показано на рисунке 2.1 как вариант (б).

Из общих законов электродинамики направляющих систем [33] известно, что в линии, неоднородной по длине, возникает явление, именуемое отражением. Это, естественно, препятствует работе приемных и передающих устройств, формирующих U-интерфейс. Неоднородность, до определенного предела, может компенсироваться оборудованием NT1 и LT.

В рекомендации МСЭ G.961 [34] приведены конфигурации неоднородных АЛ, которые - в принципе - могут быть использованы в ЦСИО. Тем не менее, следует, по возможности, избегать использования неоднородных АЛ для U-интерфейса. Передаче информации между NT1 и LT могут также препятствовать взаимные влияния [33] между электрическими цепями.

Для организации доступа в ЦСИО со структурой 2B+D практически всегда не могут быть использованы следующие типы АЛ:

- построенные, полностью или частично, на воздушных линиях связи вне зависимости от диаметра проводников и типа используемого сплава;

- включенные в комплекты спаренных АЛ или же образованные аналоговой аппаратурой высокочастотного уплотнения;

- созданные любыми типами ЦСП, используемыми для уплотнения абонентского кабеля.

Естественно, что для реализации U-интерфейса не должны использоваться пупинизированные АЛ, но они, насколько мне известно, практически не применяются ни в ГТС, ни в СТС. На рисунке 2.22 показаны примеры АЛ, которые не должны использоваться в ЦСИО. Примеры на рисунке 2.22 расположены в том же порядке, в каком они перечислены в предыдущем абзаце.

Примеры абонентских линий, которые не должны использоваться в ЦСИО

Рисунок 2.22

Доступ 30B+D чаще всего используется в цифровых УПАТС, которые поддерживают услуги ЦСИО. На рисунке 2.23 показано включение в ТФОП шести таких УПАТС. Причем, УПАТС с номерами “1” и “3” включены в УПАТС2, образуя, например, сеть производственной связи. УПАТС с номерами “2” и “4” включены в МС1, а УПАТС с номерами “5” и “6” - в МС2. Полноценное взаимодействие терминалов ЦСИО включенных, в разные МС, обеспечивается только в том случае, если между этими станциями реализована система общеканальной сигнализации, содержащая необходимые для интегрального обслуживания программные средства.

Включение УПАТС, поддерживающих услуги ЦСИО

Рисунок 2.23

На первый взгляд, задачи, возникающие при организации U-интерфейса для доступа 30B+D, должны быть более сложными. Однако проблемы, касающиеся этой ситуации, уже были тщательно проработаны при внедрении первичных ЦСП. Задача эксплуатационного персонала состоит в отборе пар абонентского кабеля, пригодных для работы первичной ЦСП [33]. Для создания тракта передачи цифровой информации для доступа 30B+D может быть также использовано оборудование, реализующее технологию HDSL [35].

Отбор пар в абонентском кабеле может потребоваться и для организации доступа в ЦСИО со структурой 2B+D. Необходимость такой процедуры определяется в процессе проведения измерений. Мне довелось участвовать в разработке методики таких измерений, выполненной для открытого акционерного общества (ОАО) “Уралсвязьинформ” (Оператор ТФОП Пермской области) и апробированной в Пермской ГТС. Прежде всего должны быть измерены низкочастотные электрические параметры АЛ, которая предназначена для организации U-интерфейса, на постоянном и переменном токе.

Если полученные результаты не соответствуют установленным нормам, то эксплуатационный персонал должен попытаться восстановить низкочастотные электрические параметры АЛ по постоянному и переменному току. АЛ, низкочастотные электрические параметры которых по постоянному и переменному току не подлежат восстановлению, бракуются с точки зрения возможности их использования в ЦСИО и других телекоммуникационных технологий, подразумевающих передачу цифровой информации.

Для АЛ, низкочастотные электрические параметры которых по постоянному и переменному току - изначально или после проведения восстановительных работ - соответствуют установленным требованиям, должны быть проведены измерения высокочастотных электрических параметров по переменному току. Если полученные результаты не соответствуют заданным заранее нормам, то эксплуатационный персонал должен попытаться восстановить высокочастотные параметры АЛ по переменному току. АЛ, высокочастотные параметры которых по переменному току не подлежат восстановлению, бракуются с точки зрения возможности их использования для ЦСИО.

К сожалению, ряд параметров АЛ может, со временем, меняться; как правило, эти изменения приводят к ухудшению эксплуатационных характеристик линейных сооружений. Целесообразно, по этой причине, отслеживать динамику изменения характеристик жил абонентского кабеля. Это удобно делать, внося отметки в паспорта АЛ, используемых для ЦСИО. Пример такого паспорта, предложенного в составе упомянутой выше методики, приведен в таблице 2.2.

Таблица 2.2

Паспорт АЛ, используемой в ЦСИО

Дата изме-

рения

Номер кабеля и его тип

Номер АЛ

Длина АЛ

Параметры по постоян-ному току

Параметры по перемен-ному току

Примечание

             
             

Профилактические измерения параметров АЛ целесообразно производить один раз в год. Номер кабеля должен соответствовать маркировке, принятой в проектных и эксплуатационных документах. Тип кабеля должен содержать все данные, позволяющие определить число жил в кабеле, их диаметр, вид скрутки и т.п. В графе “Примечание” целесообразно указывать основные особенности данной АЛ, если они существенны для эксплуатационного персонала.

Итак, ответ на поставленный вопрос (как организовать U-интерфейс, если характеристики существующей абонентской сети не позволяют передавать по физической цепи цифровые сигналы?) можно свести к совокупности следующих тезисов:

- если потенциальный пользователь ЦСИО располагает АЛ, которая не представляет собой индивидуальную двухпроводную физическую цепь, то необходимо произвести замену этой линии на другую (при условии, что абонентские кабели позволяют провести такую операцию);

- если характеристики АЛ, которую предполагается использовать в ЦСИО, не отвечают заданным нормам на низкочастотные электрические параметры АЛ по постоянному и переменному току, необходимо провести работы по восстановлению соответствующих характеристик, а в случае неудачи линия должна быть заменена.

- если и высокочастотные электрические параметры АЛ по переменному току не отвечают заданным нормам, то необходимо провести работы по восстановлению соответствующих характеристик, а в случае неудачи линия должна быть заменена.

Самая неприятная ситуация заключается в том, что возможен и такой вариант: характеристики АЛ, в принципе, не подлежат восстановлению, а возможность использования другой физической цепи отсутствует. Положение усугубляется тем, что прокладка нового абонентского кабеля может, в силу ряда причин, оказаться невозможной. В такой ситуации единственный выход - использование каких-либо беспроводных технологий, обеспечивающих подключение пользователей ЦСИО. Аспекты использования беспроводных технологий кратко изложены в последнем разделе второй главы монографии.

2.2.2.2. Концепция “наложенной” сети для ЦСИО

Потенциальные пользователи ЦСИО будут находиться в зонах обслуживания декадно-шаговых, координатных и цифровых МС. Более того, только часть цифровых МС (те, которые имеют необходимые аппаратно-программные средства) может обеспечить подключение пользователей ЦСИО. Понятно, что Оператор не будет заменять все электромеханические МС на цифровые коммутационные станции только для введения услуг ЦСИО. Конечно, такое решение представляется единственно возможным для нерайонированной ГТС, которая - по определению - состоит из одной МС. В некоторых случаях модернизация всех эксплуатируемых цифровых МС, которые не содержат необходимые для ЦСИО аппаратно-программные средства, также может оказаться не целесообразной.

В общем случае перед Оператором возникает задача: как предоставить услуги ЦСИО группе пользователей, подключенных, в пределах одной местной сети, к разным (по типу коммутационного оборудования) МС? Поиск оптимального решения этого вопроса приводит к концепции “наложенной” сети интегрального обслуживания. Рассмотрим, в качестве примера, структуру, подобную приведенной на рисунке 2.23, но будем считать, что МС2 не способна поддерживать услуги ЦСИО.

В предложенном варианте необходимо обеспечить включение в ЦСИО двух УПАТС с номерами “5” и “6”, а также группы пользователей с интерфейсами доступа 2B+D. Эти интерфейсы обычно объединяются в устройстве, названном на рисунке 2.24 Мульдексом 2B+D (мультиплексор/демультиплексор для одноименного интерфейса). Задача Мульдекса состоит в том, чтобы “упаковать” информационные потоки от десяти-двенадцати интерфейсов 2B+D в первичный цифровой тракт 2,048 Мбит/с. В помещении МС1 может быть установлен такой же Мульдекс 2B+D, либо эта коммутационная станция должна обрабатывать информацию, содержащуюся в соответствующем цифровом тракте. Обработка должна осуществляться с учетом правил размещения B- и D-каналов в потоке 2,048 Мбит/с. На рисунке 2.24 показан второй вариант.

Пример формирования ЦСИО как “наложенной сети”

Рисунок 2.24

Итак, все пользователи ЦСИО через ЦКУ2, расположенный в одном помещении с МС2, подключены к МС1, которая обеспечивает интегральное обслуживание. В нижней части рисунка 2.24 показана структура ЦСИО, образующая нерайонированную сеть. Если читатель не поленится вернуться к рисунку 1.6, он найдет любопытную аналогию с рассуждениями, приведенными в первой главе о границах сети абонентского доступа.

Использование Мульдексов 2B+D нашло практическое применение при введении услуг ЦСИО многими Операторами. Примеры применения этих устройств опубликованы, в частности, в монографии П. Боккера [36]. В статье [37] отмечено интересное приложение Мульдексов для подключения пользователей ЦСИО, работающих в домашних условиях. Следует отметить, что кроме Мульдексов могут также использоваться и концентраторы ЦСИО, размещаемые в местах группирования пользователей, ориентирующихся на интерфейсы 2B+D.

2.2.2.3. Развитие ЦСИО в процессе цифровизации ТФОП

Процесс цифровизации ТФОП подразумевает не только замену аналоговых АТС на цифровые коммутационные станции, но и существенное расширение функциональных возможностей этих новых систем распределения информации. Одна из таких возможностей - поддержка услуг ЦСИО. В конечном счете все цифровые коммутационные станции будут обеспечивать обслуживание тех пользователей ЦСИО, которые расположены на территории соответствующего пристанционного участка. Этот процесс в определенном смысле можно рассматривать как переход от “наложенной” ЦСИО к структуре, полностью (или почти полностью) совпадающей с местной телефонной сетью.

Эволюция “наложенной” ЦСИО показана на рисунке 2.25 для ГТС, состоящей из четырех МС. Предполагается, что замена каждой аналоговой АТС на цифровую коммутационную станцию представляет собой отдельный этап развития ГТС. Будем считать, что к моменту установки первой цифровой МС уже появились четыре УПАТС, для которых должны быть введены услуги ЦСИО.

Изменение структуры ЦСИО при цифровизации ТФОП

Рисунок 2.25

На этапе I все УПАТС, поддерживающие услуги ЦСИО, включаются в МС1, которая является единственной цифровой коммутационной станцией. Допустим, что рассматриваемая ГТС имеет пятизначный план нумерации. Для удобства будем считать, что первый знак номера абонента ГТС, включенного в МСi (i = 1, 2, 3, 4) равен “i”. В этом случае номер абонента, включенного в УПАТСi, имеет вид типа “ibxxx”. Процесс переключения УПАТС2, УПАТС3 и УПАТС4 в МС1 означает изменение плана нумерации их абонентов. Первая цифра (в нашем примере) будет “1”, а значения “b” и “xxx” должны выбираться из резерва номерной емкости МС1. Фактически, МС1 “расширяет” свой пристанционный участок за счет подключения абонентов трех УПАТС, расположенных в зоне обслуживания трех других МС.

На этапе II производится замена аналогового оборудования МС2 на цифровое. Теперь УПАТС2 может быть переключена в МС2 с изменением плана нумерации ее абонентов. Такое решение и показано на рисунке 2.25 для варианта (б). В принципе, можно и не переключать УПАТС. Такой вариант представлен для варианта (в) - этап III, когда устанавливается цифровая коммутационная станция МС3. УПАТС3 остается выносным модулем МС1; план нумерации ее абонентов не изменяется. Выбор рационального варианта остается за Оператором, который должен учесть прогнозируемый рост числа абонентов ГТС и их распределение между МС.

Наконец, на этапе IV осуществляется полная цифровизация ГТС. УПАТС4 может, при необходимости, переключиться в МС4, что подразумевает изменение плана нумерации для ее абонентов. Теперь в МС1 (кроме “своей” УПАТС1) включена только УПАТС3. Такое подключение влечет за собой использование ресурсов транспортной сети на двух уровнях иерархии: абонентский доступ и межстанционная связь. Эти соображения должны учитываться при решении вопроса о переключении УПАТС в близлежащую МС.

Реальные процессы развития ЦСИО будут более сложными. Во-первых, будет расти доля УПАТС, в которых - для определенной группы пользователей - должны поддерживаться услуги ЦСИО. Во-вторых, будет расширяться группа пользователей, ориентирующихся на интерфейс доступа 2B+D и не являющихся клиентами УПАТС. В третьих, для значительной доли пользователей ЦСИО более важным станет возможность выхода к информационным серверам (в частности, к тем, которые предоставляют услуги Internet), а не установление соединений между двумя стыками пользователь-сеть.

2.2.3. Нужна ли сегодня узкополосная ЦСИО?

Читатель, по всей видимости, понимает, что я отвечу на поставленный вопрос положительно; иначе зачем параграф с таким названием помещен в конце раздела по узкополосной ЦСИО? Так и есть. Мне представляется, что узкополосная ЦСИО займет определенную нишу на рынке современных телекоммуникационных технологий. Тогда возникает ряд весьма важных и интересных вопросов, касающихся прогнозируемого числа пользователей ЦСИО, наиболее популярных услуг, характеристик трафика и тому подобное. Однако известна и совершенно иная точка зрения: “Сегодня появились новые технологии, способные предоставить существенно более широкий спектр услуг, чем узкополосная ЦСИО, реализация которой приведет к напрасным затратам.”

Чаще всего подобные высказывания мне доводилось слышать от представителей эксплуатационных компаний. В процессе дискуссии выкристаллизовывается основная причина такой точки зрения - хорошая реклама телекоммуникационного оборудования, основанного на принципах, отличных от принятых в узкополосной ЦСИО. В последнее время некоторые клиенты ТФОП, иногда мало знакомые с функциональными возможностями ЦСИО, обращаются к Операторам с заявками на выделение одного или двух ОЦК. Проблемы этих клиентов часто могут быть экономично решены именно за счет использования ресурсов узкополосной ЦСИО.

Эту ситуацию хорошо поняли Операторы, создавшие современные цифровые сети. Если Вы обратите внимание на рекламу услуг этих Операторов, то обнаружите там предложения по организации интерфейсов 2B+D и 30B+D. Это означает, что узкополосная ЦСИО начала заполнять свою нишу на российском телекоммуникационном рынке.

Пока рано оценивать статистические данные, касающиеся роста числа пользователей ЦСИО в России, но любопытно посмотреть как протекают подобные процессы в других странах. В частности, в США и Канаде, которые не были пионерами в практической реализации концепции интегрального обслуживания, наблюдается заметный рост числа пользователей ЦСИО [38]. На рисунке 2.26, который основан на данных статьи [38], приведены две диаграммы, иллюстрирующие связанные между собой процессы: установка дополнительных АЛ и переход от использования нескольких линий доступа к интегральному обслуживанию.

Изменение принципов доступа к телекоммуникационным услугам

Рисунок 2.26

Верхний график показывает относительный рост числа жилищ (квартир или отдельных домов) в Северной Америке, где используются две или более АЛ. Вверху каждого столбика указана численность таких жилищ. За период с 1992 по 1996 год среди абонентов произошло удвоение числа клиентов ТФОП, использующих в своем жилище более одной АЛ. К сожалению, нет достоверных сведений о назначении дополнительных АЛ. По всей видимости, сначала они использовались для включения факсимильных аппаратов, но в последние годы дополнительные АЛ часто предназначаются для подключения ПК. Эта тенденция обусловлена ростом численности населения, работающего в домашних условиях. Такой способ организации труда известен в англоязычной технической литературе по термину “Work-at-home” [39].

Нижний график представляет динамику роста пользователей ЦСИО, ориентирующихся на интерфейс 2B+D. Если сравнить четырехлетние циклы (1992 - 1996 годы для первого графика и 1994 - 1998 годы для второго графика), то нельзя не заметить следующую тенденцию: средний клиент ТФОП в 2,5 раза чаще становится пользователем ЦСИО, чем заказывает установку дополнительных АЛ. Несомненно, что этот процесс стимулируется и разумной тарифной политикой Операторов [40].

Рост количества пользователей ЦСИО отмечают Операторы многих стран. И прогнозы на ближайшие годы также позволяют надеяться на расширение сферы применения узкополосной ЦСИО. Если читателю интересны статистические данные, касающиеся различных аспектов ЦСИО, то я бы посоветовал обратиться к журналу “ISDN User”, в котором, почти в каждом номере, публикуются подобные сведения.

В области телекоммуникаций Россия отстает от развитых стран. В этом малоприятном факте есть ряд небольших преимуществ, одно из которых заключается в возможности использования результатов, полученных идущими впереди. В контексте вопросов, рассмотренных в разделе 2.2, этот постулат означает что, узкополосная ЦСИО найдет применение на российском рынке телекоммуникационных услуг. Такое утверждение, в свою очередь, объясняет практический интерес к проблемам организации абонентского участка узкополосной ЦСИО.

2.3. Широкополосные сети доступа

2.3.1. Виды широкополосных сетей доступа

Сети доступа, рассматриваемые в разделе 2.3, создаются в широкополосных системах связи. Основное применение подобных систем - создание сетей КТВ. Однако в последние годы широкополосные сети доступа нашли применение и для решения других проблем. В частности, пассивные оптические сети (Passive Optical Network - PON), обладающие широкой полосой пропускания сигналов, используются для подключения выносных модулей к цифровой коммутационной станции. Такой вариант использования пассивных оптических сетей известен по аббревиатуре TPON (Telephony over Passive Optical Network), используемой в англоязычной технической литературе [4, 26].

Некоторые варианты создания широкополосных сетей доступа изложены в [4], но за пять лет, прошедших с момента публикации этой монографии, произошли существенные изменения. Новые сведения, прямо или косвенно касающиеся широкополосных сетей доступа, часто публикуются в технической литературе, в том числе, и в отечественных журналах.

В [4] не были затронуты вопросы использования комбинированных сетей, состоящих из оптического волокна и коаксиального кабеля. В англоязычной технической литературе это решение известно по аббревиатуре HFC - Hybrid Fiber-Coax. Прямой перевод этих трех слов не проясняет смысл данной технологии. В разделе 2.3 термину HFC поставлено в соответствие такое сочетание слов: комбинированная среда “волокно-коаксиал”.

Использование в качестве среды распространения сигналов комбинации оптического волокна и коаксиальной трубки не рассматривалось Операторами ТФОП как удачное решение для создания транспортной сети. Идея использования такой среды распространения сигналов принадлежит Операторам КТВ. Телефония и телевидение считались принципиально разными видами связи. Начальная фаза интеграционных процессов в электросвязи не изменила эту точку зрения. Поэтому технология HFC не была воспринята Операторами ТФОП.

Затем наступил перелом. Одно из направлений в развитии ТФОП заключается в постепенном повышении полосы пропускания сигналов, что позволяет - в обозримом будущем - ввести услуги распределения программ телевидения и интерактивного обмена видеоинформацией. Системы КТВ, в свою очередь, эволюционируют в направлении интерактивных систем, что создает хорошую основу для поддержки услуг ТФОП, ЦСИО и ряда других функциональных возможностей. Началась конкурентная борьба между Операторами ТФОП и КТВ.

Мы не будем касаться конкурентной борьбы между Операторами ТФОП и КТВ. Основное внимание следующих двух параграфов уделено комбинированной среде “волокно-коаксиал” и пассивной оптической сети. В разделе 2.3 не затрагиваются аспекты сетей доступа, специфичные для широкополосной ЦСИО, так как этой проблеме посвящен отдельный раздел второй главы.

2.3.2. Комбинированная среда “волокно-коаксиал”

Многие Операторы КТВ активно модернизируют свои сети для введения интерактивных услуг. Можно выделить несколько сценариев, реализация которых приведет к построению широкополосной интерактивной системы. Основные различия между этими сценариями будут продиктованы перечнем услуг, которые собирается реализовать Оператор сети КТВ. Если, например, Оператор намерен ввести услугу “Видео по заказу”, то модернизацию сети нельзя считать кардинальной. Иная картина складывает в том случае, когда Оператор собирается предложить своим клиентам услуги телефонной связи.

Основная группа Операторов КТВ начинает модернизацию своей сети с введения услуг типа “Видео по заказу”. Именно такое решение будет рассмотрено в данном параграфе. Мы начнем с рисунка 2.27, который иллюстрирует вероятное распределение частотных диапазонов при расширении функциональных возможностей КТВ до интерактивной системы [26].

Пример использования частотного диапазона в новых сетях КТВ

Рисунок 2.27

Область, названная на рисунке 2.27 “Аналоговые каналы”, используется в классической системе КТВ. Часть диапазона, обозначенная буквой “А”, предназначена для передачи управляющей информации от терминала к сетевому оборудованию. В диапазоне “В” расположены как аналоговые каналы КТВ, так и цифровые каналы, используемые для услуги “Видео по заказу”. Для передачи цифровой видеоинформации по аналоговым каналам обычно используется квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation).

Традиционные системы КТВ используют коаксиальный кабель. На рисунке 2.28 показана модель распределительной сети КТВ, заимствованная из [41]. Заметим, что в традиционной сети КТВ используются только односторонние усилители, которые - для поддержки интерактивных услуг - подлежат замене на устройства, обеспечивающие компенсацию потерь мощности сигнала в направлениях приема и передачи.

Модель распределительной сети КТВ

Рисунок 2.28

Комбинированная среда “волокно-коаксиал” создается как дополнение к инфраструктуре КТВ. Использование этой технологии целесообразно пояснить на примере системы, создаваемой для реализации услуги “Видео по заказу”. Фрагмент такой системы приведен на рисунке 2.29. Он содержит следующие основные элементы:

- три видеосервера, хранящих видеоинформацию различного назначения (фильмы, обучающие программы и тому подобное);

- устройства преобразования видеоинформации в цифровой поток, передаваемый через сеть ATM;

- коммутатор ATM, через который пользователи обращаются к любому видеосерверу;

- модулятор QAM, выполняющий преобразование цифровых сигналов для их распределения в аналоговой форме по коаксиальному кабелю;

- сумматор, осуществляющий объединение двух групп телевизионных каналов;

- приставки (Set-top box), с помощью которых пользователь осуществляет функции управления системой.

Пример использования комбинированной среды“волокно-коаксиал” для услуги “Видео по заказу”

Рисунок 2.29

Сразу отметим, что модель, показанная на рисунке 2.29, не может считаться универсальной. В частности, в [26] указана возможность установки преобразователя АТМ в приставке к телевизору. Такое решение представляется весьма эффективным, если Оператор планирует расширять перечень интерактивных услуг, предоставляемых своим клиентам.

Рассмотрим основные этапы установления соединения для услуги “Видео по заказу” при использовании комбинированной среды “волокно-коаксиал”. Но сначала целесообразно ввести ряд комментариев, касающихся реализации структуры, показанной на рисунке 2.29.

Видеосервер представляет собой специализированную базу данных, в которой хранится видеоинформация. Эти видеосерверы могут быть специализированными, то есть содержать видеоинформацию по определенным направлениям: художественные фильмы, мультфильмы, игровые программы и так далее. Возможен вариант, когда видеосерверы создаются конкурирующими поставщиками и содержат однотипную информацию. Получая запрос пользователя, видеосервер должен начать процесс передачи требуемой информации.

Видеоинформация кодируется с использованием определенного способа сжатия изображения. Могут применяться устройства, отвечающие различным стандартам. Чаще всего Операторы ориентируются на стандарты MPEG1+ и MPEG2 [42]. Преобразованная видеоинформация переносится через сеть АТМ в виде конвертов (этим словом, здесь и далее, переводится термин “Cell”). Такой перевод термина “Cell”, предложенный моим коллегой В.А. Соколовым, мне представляется очень удачным, так как позволяет провести аналогию между процессом передачи информации в сети АТМ и пересылкой письма по почте. В свою очередь, появляется возможность не только адекватно выполнить перевод технической литературы, касающейся технологии АТМ, но и весьма просто объяснить некоторые принципы работы Ш-ЦСИО.

Приставка обеспечивает сопряжение сети и терминалов, в качестве которых могут использоваться телевизионный приемник, стереофонический радиоприемник, видеомагнитофон, персональный компьютер, подключаемый через интерфейс RS232, игровая приставка и тому подобное оборудование. Управление может осуществляться с помощью инфракрасных лучей, посылаемых с пульта, аналогичного широко используемым устройствам для современных бытовых телевизоров. В состав приставки могут также входить специальные средства, позволяющие исключить или ограничить просмотр каких-либо каналов, например, транслирующих программы, которые не должны смотреть дети.

Итак, вернемся к процессу установления соединения с видеосервером. Мне в 1997 году довелось присутствовать в исследовательской лаборатории фирмы Nortel в городе Оттава, где демонстрируется один из вариантов реализации услуги “Видео по Заказу”. Хотя представленная там конфигурация немного отличается от структуры, представленной на рисунке 2.29, процедуры, выполняемые абонентом, остаются неизменными.

Первый этап установления соединения - ознакомление с меню, которое выводится на экран телевизионного приемника или персонального компьютера в зависимости от используемого абонентом терминала. В исследовательском центре Nortel можно было выбрать один из трех серверов, специализированных по виду информации. Первый этап заканчивается выбором сервера, но к нему можно вернуться, если следующие шаги не приведут к нахождению нужной программы.

Следующий этап состоит в выборе необходимой программы. Допустим, что абонент решил посмотреть художественный фильм, поиск которого осуществлялся с помощью персонального компьютера. Подведя курсор к выбранному названию и щелкнув кнопкой “мышки”, абонент автоматически выбирает самый простой способ просмотра фильма - от начала до конца. Можно использовать более сложные процедуры. В частности, абонент имеет возможность заказать услугу на конкретное время.

Третий этап представляет собой процесс управления режимом получения информации. Отличительная особенность услуги “Видео по заказу” состоит в том, что абонент может просматривать информацию в таком режиме , какой обеспечивает современный видеомагнитофон. Например, часть фильма, мало интересная абоненту, может быть пропущена, а какой-то фрагмент просмотрен несколько раз. Допускается использование команды “Стоп кадр” и другие операции.

Таким образом, сочетание существующей сети КТВ на базе коаксиального кабеля и оборудования АТМ, работающего по ОК, позволяет существенно расширить спектр предоставляемых абонентам услуг. Такое решение, с точки зрения сети абонентского доступа, связано с использованием комбинированной среды распространения сигналов, названной в параграфе 2.3.2 “волокно-коаксиал”. Тем не менее, возможна ситуация, когда ОК используется за пределами сети абонентского доступа. На рисунке 2.30 приведены два варианта сети абонентского доступа, в которых используется комбинированная среда “волокно-коаксиал”.

Два варианта сети абонентского доступа с комбинированной средой “волокно-коаксиал”

Рисунок 2.30

Вариант (а) подразумевает, что МС включается в коммутатор АТМ, представляющий собой верхний уровень иерархии коммутируемой сети. Тогда комбинированная среда “волокно-коаксиал” образует вместе с оборудованием, используемым для телефонии, общую сеть абонентского доступа. Вариант (б) иллюстрирует ситуацию, когда новая сеть КТВ развивается как самостоятельная система. В этом случае соединения между МС и коммутатором АТМ могут осуществляться через транзитные узлы ТФОП. Скорее всего, надобности в такого рода связи не будет; поэтому на рисунке 2.30 соединение ТФОП с коммутатором АТМ показано пунктирной линией.

Модель, приведенная на рисунке 2.30, используется также для качественного анализа информационных потоков, передаваемых комбинированной средой “волокно-коаксиал”. Наша модель содержит один коммутатор АТМ, но, в принципе, их может быть два и более. Итак, между видеосерверами и коммутатором АТМ проложено К трактов с пропускной способностью B1, B2 ... BK. Между коммутатором АТМ и центрами КТВ проложено L трактов с пропускной способностью С1 , С2 ... СL. Очевидно, что B1+ B2 +...+ BK » С1+ С2 +...+ СL.

В каждом центре КТВ частотный диапазон, который может использоваться для новых услуг, ограничен и примерно одинаков, то есть F1» F2»...» FL. Доля абонентов, использующих интерактивные услуги, будет несомненно расти, что приведет к “перегрузке” коаксиальных линий, которые станут сдерживать дальнейшее развитие всей системы. Вероятный выход из такой ситуации - максимальное расширение той части сети, которая построена на ОК. Пассивная оптическая сеть, принципам создания которой посвящен следующий параграф, может рассматриваться как один из возможных вариантов решения такой проблемы, хотя данная технология имеет более широкую область применения.

До изложения принципов реализации пассивной оптической сети необходимо упомянуть об одном специфическом приложении комбинированной среды “волокно-коаксиал” - создание систем видеонаблюдения [43]. Подобные системы можно рассматривать как изолированные широкополосные сети. Их взаимодействие с правоохранительными органами осуществляется, как правило, за счет передачи низкоскоростной информации (сигналы тревоги) или речи. Передача информации от датчиков, расположенных на контролируемых объектах, до центра наблюдения может осуществляться за счет ресурсов сетей, построенных на комбинированной среде “волокно-коаксиал”.

2.3.3. Пассивная оптическая сеть

Заметный интерес к пассивным оптическим сетям заключается, по всей видимости, в том, что они могут эффективно использоваться до возникновения рынка услуг, ориентированных на применение широкополосных каналов. В частности, упоминавшаяся в параграфе 2.3.1 концепция TPON была разработана для экономичного подключения абонентов к ТФОП. Вместе с тем, пассивные оптические сети служат хорошей основой для введения широкополосных услуг вне зависимости от вида телекоммуникационных технологий.

Модель пассивной оптической сети, которая предложена МСЭ [44], показана на рисунке 2.31 в виде трех функциональных блоков. Оптический линейный терминал (Optical Line Terminal - OLT) обеспечивает сопряжение оптической распределительной сети (Optical Distribution Network - ODN) и МС. Этот терминал, как правило, размещается в кроссе МС.

Оптические сетевые модули (Optical Network Unit - ONU) обычно располагаются в местах концентрации пользователей обслуживаемой сети. Они выполняют функции сопряжения оптической распределительной сети и выносных модулей коммутируемой сети. Линейный терминал и сетевой модуль содержат активные электронные и оптические элементы, формирующие тракты передачи и приема сигналов. Оптическая распределительная сеть содержит только пассивные компоненты (ОВ, разветвители, разъемы и им подобные элементы), что и способствовало появлению термина “Пассивная оптическая сеть”.

Модель пассивной оптической сети, предложенная МСЭ

Рисунок 2.31

Модель, предложенная МСЭ в [44], может быть использована для объяснения принципов работы значительного числа сетей абонентского доступа. Она инвариантна к типу используемого оборудования. В качестве примера на рисунке 2.32 показана пассивная оптическая сеть, используемая в качестве элемента сетей доступа к услугам ТФОП и КТВ.

Пример использования пассивной оптической сети для ТФОП и КТВ

Рисунок 2.32

В левой верхней части рисунка 2.32 расположена цифровая МС, включенная по стандартным трактам 2,048 Мбит/с в мультиплексор с временным разделением каналов. Этот мультиплексор, в совокупности с устройством преобразования электрических сигналов в оптические, образует оптический линейный терминал. В рассматриваемом примере на выходе устройства преобразования осуществляется передача сигнала на волне 1300 нм.

Цифровые телевизионные кодеры также подключаются к мультиплексору с временным разделением каналов, который, в свою очередь, связан с устройством преобразования электрических сигналов в оптические. Это устройство осуществляет передачу сигнала на волне 1550 нм.

Групповой сигнал распределяется по пассивной оптической сети через разветвители. Эти разветвители размещаются в местах установки оптических сетевых модулей. Сразу после разветвителя групповой сигнал попадает в мультиплексор с разделением каналов по длинам волн. Сигнал, передаваемый на волне 1300 нм, после прохождения устройства преобразования оптических сигналов в электрические, направляется к выносному модулю ТФОП. Сигнал, передаваемый на волне 1550 нм, после прохождения устройства преобразования оптических сигналов в электрические и декодера, попадает в систему КТВ.

Приведенный пример, составленный из моделей, заимствованных из [26] и [44], иллюстрирует только один из возможных вариантов применения пассивной оптической сети, когда используется два вида мультиплексоров - с разделением каналов по времени (Time Division Multiplex - TDM) и по длинам волн (Wavelength Division Multiplex - WDM). В [44] рассматривается также возможность использования мультиплексоров с разделением каналов по частоте (Frequency Division Multiplex - FDM). Сети могут различаться обслуживаемой территорией и числом разветвителей. А применяемые разветвители могут иметь разное число направлений; в приведенных в [44] примерах фигурируют разветвители с восемью и шестнадцатью направлениями.

Использование спектрального уплотнения (разделение каналов по длинам волн) позволяет резервировать - для перспективных приложений - пропускную способность транспортной сети без выделения запасных ОВ. В частности, длина волны 1300 нм рекомендуется для ТФОП и узкополосной ЦСИО, а окно 1550 нм предлагается зарезервировать для широкополосных услуг [44]. Такой подход позволяет рассматривать пассивные оптические сети как универсальное решение для всех телекоммуникационных систем. На рисунке 2.33 показан пример использования ресурсов пассивной оптической сети как общей базы для ТФОП, сети арендованных каналов, системы КТВ и Ш-ЦСИО.

Использование ресурсов пассивной оптической сети

Рисунок 2.33

В модель введены некоторые ограничения. Во-первых, показан вариант использования только одного ОК с N волокнами. Во-вторых, спектральное уплотнение осуществляется только по двум длинам волн l1 и l2. В-третьих, не показано распределение ресурсов для ОВ с номерами от “2” до “N-1”. Тем не менее, возможность использования пассивной оптической сети для самых разных телекоммуникационных систем очевидна даже при ограничениях, введенных в модель.

Дальнейшее совершенствование пассивных оптических сетей будет осуществляться в трех основных направлениях. Первое направление связано с необходимостью снижения себестоимости основных элементов пассивной оптической сети, что, в основном, определяется технологическими успехами в области оптоэлектроники. Вторая задача - разработка технических решений для экономичного использования пассивных оптических сетей на территориях, которые могут существенно различаться поверхностной плотностью размещения потенциальных клиентов, и в условиях, когда такая сеть обслуживает существенно разные по размеру группы абонентов. Третье направление касается эффективного использования пассивных оптических сетей в Ш-ЦСИО, все требования которой учесть заранее не представляется возможным.

2.4. Варианты организации сети доступа в широкополосной ЦСИО

2.4.1. Некоторые особенности Ш-ЦСИО

Попробуем рассмотреть особенности Ш-ЦСИО с двух точек зрения. Сначала оценим эти особенности извне, а затем коснемся некоторых аспектов “внутреннего” устройства Ш-ЦСИО. Когда я читал студентам лекции по основным принципам построения современных телекоммуникационных сетей, мне показалось удобным объяснять ряд вопросов в системе понятий “участники (игроки) и роли”. Этот подход, предложенный экономистами Гарвардской школы, начал использоваться и в электросвязи. В частности, в материалах МСЭ, относящихся к Глобальной Информационной Инфраструктуре [45], для пояснения ряда деталей вводятся упомянутые понятия. Обратимся к рисунку 2.34, состоящему из двух частей - левой и правой.

Участники телекоммуникационного рынка

Рисунок 2.34

В левой части рисунка названы три основных участника (игрока) телекоммуникационного рынка:

- абоненты, заинтересованные в услугах электросвязи, для получения которых они обращаются к Операторам;

- Операторы, создающие сети связи на базе оборудования, которое приобретается у его производителей;

- производители оборудования, разрабатывающие технические средства, которые отвечают требованиям Оператора и потенциальных абонентов.

Теперь обратимся к правой части рисунка 2.34, представляющей собой кубик, трем граням которого присвоены названия. Каждая из этих граней связана с эллипсом, содержащим имя одного из трех участников телекоммуникационного рынка.

Основные требования к УСЛУГАМ связи формируют, в конечном счете, абоненты. Безусловно, в этот процесс вовлечены не только абоненты. В частности, многие идеи, касающиеся перспективных услуг, обычно рождаются в научно-исследовательских центрах. Однако именно абоненты определяют спрос на предлагаемые возможности, “голосуя” за них своими деньгами. Естественно, абоненты не специфицируют свои требования до такого уровня, когда можно сформулировать техническое задание на разработку соответствующих аппаратно-программных средств. Эти требования удобно представить в самом общем виде: передача речи, обмен данными, выход в Internet и подобные услуги.

Создаваемые Операторами СЕТИ СВЯЗИ предоставляют своим абонентам услуги. Как правило, необходимая совокупность сетей связи создается несколькими Операторами. Более того, используя различное оборудование, можно решить конкретную задачу за счет построения разного числа сетей. На рисунке 2.34 показан случай, когда одним Оператором создается транспортная сеть, сеть с коммутацией каналов (для введения услуг ТФОП и ЦСИО) и сеть с коммутацией пакетов (для услуг по передаче дискретной информации).

Для построения телекоммуникационных сетей Операторы приобретают ОБОРУДОВАНИЕ СВЯЗИ - коммутаторы, системы передачи, линейные сооружения и иные технические средства. Разработка этих технических средств осуществляется производителями оборудования, которые учитывают требования абонентов и Операторов.

Предложенная модель не включает в себя ряд других, весьма активных, участников телекоммуникационного рынка. Она не отражает и пути прохождения финансовых потоков, хотя это очень важно для установления четких правил игры на телекоммуникационном рынке. Однако данная модель отражает те особенности Ш-ЦСИО, которые существенны с точки зрения рассматриваемых в разделе 2.4 вопросов. При анализе интересных для нас особенностей Ш-ЦСИО можно использовать модель, также представляющую собой кубик (рисунок 2.35).

Особенности широкополосной ЦСИО

Рисунок 2.35

Большой интерес для потенциальных абонентов представляют следующие возможности Ш-ЦСИО:

- доступ практически ко всем телекоммуникационным услугам через один интерфейс пользователь-сеть, что подразумевает вероятное снижение затрат на терминальное оборудование;

- взаимодействие с одним Оператором, что позволяет надеяться на снижение суммарных затрат на телекоммуникационные услуги;

- услуги обмена видеоинформацией, предоставляемые, в том числе, в интерактивном режиме, что существенно изменяет роль телекоммуникационной системы как составной части информационной инфраструктуры.

Оператор, анализирующий целесообразность создания Ш-ЦСИО, должен рассматривать все ее достоинства и недостатки. Целесообразно подчеркнуть два момента, определяемых процессами развития электросвязи:

- во-первых, оборудование, реализующее функции интегрального обслуживания, должно быть дешевле, чем совокупность технических средств, решающих аналогичные задачи за счет создания нескольких сетей ;

- во-вторых, заметно растет рынок услуг, подразумевающих различные формы обработки информации, а не только установление соединения по определенному номеру.

Концепция Ш-ЦСИО для производителей оборудования “приготовила” ряд сюрпризов, основным из которых можно считать технологию АТМ. Вторая особенность Ш-ЦСИО, существенная для производителей оборудования, состоит в том, что высокие скорости обмена информацией стимулируют разработку новых технологических решений при создании систем передачи и коммутации.

Если все перечисленные выше особенности Ш-ЦСИО рассматривать с чисто технической точки зрения, то, пожалуй, наиболее интересным новшеством можно считать технологию АТМ. В следующем параграфе кратко изложены самые общие принципы технологии АТМ, необходимые для описания ряда решений, предлагаемых для сети доступа в Ш-ЦСИО.

2.4.2. Технология АТМ

Существующие телекоммуникационные сети используют, в основном, два метода распределения информации: коммутация каналов и коммутация пакетов. Каждый из этих методов обладает своими достоинствами и недостатками. В зависимости от основного назначения телекоммуникационной сети выбирается подходящий метод распределения информации. В ТФОП используется только коммутация каналов. В современных сетях ПД применяется метод коммутации пакетов.

В процессе разработки рекомендаций МСЭ по Ш-ЦСИО возникла необходимость выбрать единый метод распределения информации, свободный, по возможности, от недостатков принципов коммутации каналов и пакетов. В результате длительных обсуждений возникла идея асинхронного режима переноса информации [46] - технологии АТМ. В Ш-ЦСИО технология АТМ используется для всех услуг, то есть как для широкополосных, так и для узкополосных.

Основные идеи, составляющие основу технологии АТМ, заключаются в следующем:

- поток передаваемых битов разделяется на блоки фиксированной длины по 48 байтов (аналог размера почтового конверта);

- каждый блок дополняется заголовком длиной 5 байтов (подобие адреса, который должен быть указан для правильной доставки письма), образуя конверт АТМ (ATM-cell) длиной 53 байта;

- последовательность конвертов передается через совокупность транзитных коммутаторов АТМ (как письмо через промежуточные почтовые отделения), в которых анализируется только содержимое заголовков (как в процессе обработки почтовой корреспонденции);

- принимаемые на стороне пользователя сообщения “освобождаются” от заголовка (процедура, подобная вскрытию конверта для извлечения письма) и собираются в общий поток битов.

Благодаря фиксированному размеру конвертов, их заголовки в непрерывном потоке конвертов находятся в строго определенных - по временной оси - позициях, что дает возможность использовать простые процедуры выделения конвертов. Обработка конвертов в транзитных коммутаторах АТМ осуществляется исключительно аппаратными средствами, что обеспечивает минимальную задержку передаваемых сообщений между корреспондирующими интерфейсами пользователь-сеть.

Пример формирования конвертов показан на рисунке 2.36 для потока битов, образованных в результате дискретизации аналогового сигнала. Обычно исходный сигнал содержит паузы, то есть отрезки времени в течение которых информация не передается. Наличие пауз используется для статистического уплотнения трактов передачи информации.

Общие принципы формирования конвертов АТМ

Рисунок 2.36

Технологическая основа для реализации изложенных выше принципов АТМ формируется совокупностью следующих факторов:

- ОВ и цифровые РРЛ обеспечивают высокую достоверность передаваемой информации, что позволяет отказаться от классических принципов исправления ошибок за счет повторной передачи искаженных сообщений между смежными коммутаторами [47], а использовать (при необходимости) подобные процедуры только в терминалах пользователей;

- последние достижения в разработке коммутаторов АТМ, включая необходимую элементную базу, обеспечивают возможность создания средств распределения информации с пропускной способностью в десятки и сотни Гбит/с.

Приведенное в данном параграфе описание технологии АТМ нацелено на изложение ряда вопросов, касающихся сети абонентского доступа. Читателям, которые хотели бы познакомиться с технологией АТМ, я бы рекомендовал монографию Мартина Кларка [22] и рекомендации МСЭ серии I. Кроме того, можно найти и ряд других интересных материалов, прямо или косвенно связанных с технологией АТМ, но эти работы написаны на английском языке. Читателям, испытывающим трудности с чтением технической литературы на английском языке, целесообразно просмотреть журнал “Сети и системы связи”, в котором публикуются интересные статьи по технологии АТМ, и монографию «АТМ технология высокоскоростных сетей», написанную А.Н. Назаровым и М.В. Симоновым (издана ЭКО-ТРЕНДЗ в 1998 году).

2.4.3. Интерфейс пользователь-сеть Ш-ЦСИО

Технология АТМ, безусловно, занимает важное место в общей концепции Ш-ЦСИО. С другой стороны, весьма радикальные изменения (по сравнению с концепцией обычной ЦСИО) претерпевают и другие компоненты сети. На рисунке 2.37 приведена модель Ш-ЦСИО, заимствованная из монографии [22]. В данном параграфе мы рассмотрим только интерфейс пользователь-сеть, что позволит перейти к основному вопросу раздела 2.4 - принципы организации сети доступа в Ш-ЦСИО.

Модель широкополосной ЦСИО

Рисунок 2.37

Рекомендации для интерфейса пользователь-сеть в Ш-ЦСИО сначала разрабатывались в МСЭ. Позднее консорциум ATM Forum в сжатые сроки разработал свою версию стандартов для интерфейса пользователь-сеть в Ш-ЦСИО. Существенных противоречий между документами МСЭ и ATM Forum практически нет, но в спецификациях, предложенных обеими организациями, используются разные скорости обмена информацией через интерфейс пользователь-сеть. МСЭ сначала определил два интерфейса со скоростями 155 Мбит/с и 622 Мбит/с. Затем была изучена возможность введения ряда услуг Ш-ЦСИО через интерфейс пользователь сеть на скоростях первичной ЦСП, составляющей для европейских стран 2,048 Мбит/с.

Специалисты, участвующие под эгидой МСЭ в разработке рекомендаций для Ш-ЦСИО, пришли к выводу, что на начальном этапе внедрения технологии АТМ можно использовать скорость 2,048 Мбит/с. Это объясняется рядом соображений. Во-первых, во многих случаях не надо будет заменять абонентские кабели с медными жилами на ОК. Во-вторых, успехи в области сжатия видеоинформации вселяют определенный оптимизм относительно использования трактов 2,048 Мбит/с для многих приложений.

В частности, в работе [48] приводятся такие оценки: сигналы в системах интерактивного телевидения могут передаваться на скоростях от 1,5 до 15 Мбит/с, профессиональная видеоконференция требует полосу пропускания от 56 кбит/с до 2,048 Мбит/с, “настольная” видеоконференция (Desk Top Video) может осуществляться в диапазоне от 56 кбит/с до 128 кбит/с. С другой стороны, в той же работе указано, что для телевидения высокой четкости (ТВЧ) необходим диапазон от 15 Мбит/с до 25 Мбит/с, то есть интерфейс пользователь-сеть на скорости 2,048 Мбит/с способен поддерживать только часть услуг Ш-ЦСИО.

Консорциум ATM Forum специфицировал, в частности, интерфейс пользователь-сеть на скорости 25,6 Мбит/с [49], что можно рассматривать как компромиссное решение для номиналов 2,048 Мбит/с и 155 Мбит/с, предложенных МСЭ. По всей видимости, решения консорциума ATM Forum найдут отражение и в соответствующих рекомендациях МСЭ. Стандартизация интерфейсов пользователь-сеть, работающих на относительно низких скоростях, имеет большое практическое значение, так как появляется реальная возможность использовать некоторые фрагменты существующих линейных сооружений.

Конфигурация интерфейса пользователь-сеть в Ш-ЦСИО инвариантна к скорости передачи битов. Функциональные блоки, используемые для описания возможных конфигураций интерфейса в Ш-ЦСИО, аналогичны тем, что введены для узкополосной ЦСИО (рисунок 2.19). Название функционального блока предваряет символ «B» - первая буква в слове «Broadband» (широкополосный). На рисунке 2.38 показаны два примера конфигурации интерфейса пользователь-сеть в Ш-ЦСИО.

Примеры конфигурации интерфейса пользователь-сеть в Ш-ЦСИО

Рисунок 2.38

Вариант (а) иллюстрирует конфигурацию с централизованным (общим) сетевым окончанием B-NT2. Примером подобной конфигурации может служить сеть в пределах предприятия, в которой сетевое окончание B-NT1 выполняет функции физического сопряжения с телекоммуникационной системой общего пользования.

Вариант (б) представляет конфигурацию кольцевого типа, в которой присутствует новый интерфейс, обозначенный буквой «W». Рекомендация МСЭ I.413 [50] определяет этот интерфейс для промежуточного адаптера (MA - Medium Adaptor). Эти адаптеры (в совокупности) выполняют функции сетевого окончания B-NT2, обеспечивая подключение нескольких терминалов к одному интерфейсу пользователь-сеть. Допускается произвольная реализация интерфейса W, так он используется только между адаптерами MA. Простейшим аналогом конфигурации кольцевого типа считается локальная вычислительная сеть (ЛВС) типа Token Ring [22].

Возможны, безусловно, и другие конфигурации интерфейсов. Некоторые новые предложения уже обсуждаются специалистами, работающими над рекомендациями МСЭ и стандартами ETSI. Консорциум ATM Forum также изучает перспективные конфигурации для интерфейсов пользователь-сеть в Ш-ЦСИО.

2.4.4. Сеть доступа в широкополосной ЦСИО

2.4.4.1. Общие соображения

Несомненно, реализация сети доступа в Ш-ЦСИО должна осуществляться с учетом множества факторов. С точки зрения вопросов, рассматриваемых в монографии, целесообразно выделить два таких фактора. Во-первых, принципы доступа к ресурсам Ш-ЦСИО будут зависеть от выбранного сценария ее построения. Во-вторых, реализация сети доступа для поддержки услуг Ш-ЦСИО должна осуществляться как часть общей программы поэтапного развития всей телекоммуникационной системы. Эти два фактора не могут рассматриваться раздельно; они достаточно сильно связаны между собой.

Рассмотрим, для начала, те возможности, которые открываются для Ш-ЦСИО в процессе развития сети абонентского доступа цифровой коммутационной станции. Будем полагать, что - прямо или косвенно - этот процесс связан с тем, каковы у Оператора планы введения новых услуг электросвязи. Рисунок 2.39 иллюстрирует возможную схему долгосрочных действий Оператора при поэтапном введении перспективных услуг связи.

Координация планов введения новых услуг и процессов развития сети абонентского доступа

Рисунок 2.39

Точка t0 определяет момент, когда начинается процесс модернизации существующей сети абонентского доступа. Первый этап этого процесса должен закончиться к моменту t1, когда ОК будет проложен до удаленных модулей (помещений концентраторов и УПАТС). Для организации цифровых трактов до терминалов пользователей, которым это необходимо, может использоваться оборудование на базе технологии ADSL. Результат первого этапа модернизации сети абонентского доступа, с учетом введенных ранее аббревиатур, обозначен суммой «FTTR+ADSL».

Такая фаза развития сети абонентского доступа позволит организовать интерфейсы Ш-ЦСИО, ориентированные на низкую - относительно номинала 155 Мбит/с - скорость передачи информации. Технология ADSL, кроме того, ориентирована на асимметричный (по скорости обмена сообщениями в обоих направлениях) интерфейс пользователь-сеть. Следует учесть, что некоторым пользователям могут быть предоставлены интерфейсы и на достаточно высоких скоростях. Такая возможность становится реальной для пользователей, расположенных недалеко от места, где осуществляется переход от ОВ к витым парам.

В интервале [t1, t2] осуществляется второй этап модернизации сети абонентского доступа. В этот период времени ОК доводится до зданий, что позволяет широко использовать оборудование, реализованное на базе технологии VDSL. Это, в свою очередь, обеспечивает эффективное использование физических пар для передачи информации с высокой скоростью. Рассматриваемая фаза развития сети абонентского доступа, по аналогии с предыдущим этапом, названа «FTTB+VDSL». На данном этапе развития сети абонентского доступа неизбежно будут существовать некоторые ограничения на используемые интерфейсы, которые касаются скорости и/или места подключения потенциальных клиентов Ш-ЦСИО.

Момент времени t2 знаменует начало третьего этапа модернизации сети абонентского доступа. Этот этап закончится в точке t3, названной на рисунке «Оптимальное решение». Под оптимальным решением здесь понимается такая ситуация, когда Оператор может подключить к Ш-ЦСИО любого клиента вне зависимости от его расположения в пределах пристанционного участка и требуемого (из множества стандартизованных) интерфейса пользователь-сеть. В интервале [t3, t4], с точки зрения характеристик сети абонентского доступа, не существует никаких ограничений на подключение к Ш-ЦСИО. Логично предположить, что подобных ограничений не будет и после момента времени t4, когда начнется новый этап развития системы абонентского доступа.

Вы, вероятно, уже заметили, что рассмотренная схема представляет процесс модернизации сети абонентского доступа весьма упрощенно. В частности, этапы не перекрываются во времени, чего на практике быть не может, не представлены многие важные телекоммуникационные технологии, без которых невозможно себе представить перспективную сеть доступа, и так далее. Поэтому рисунок 2.39 не следует рассматривать как программу развития сети абонентского доступа. Назначение рисунка - показать важность координации планов введения новых телекоммуникационных услуг и процессов модернизации сети абонентского доступа. Приведенные выше качественные рассуждения могут быть подкреплены технико-экономическими расчетами.

Итак, мы рассмотрели те возможности, которые предоставляются Оператору в процессе развития сети абонентского доступа с учетом требований Ш-ЦСИО. Это позволяет подойти вплотную к разработке стратегии создания Ш-ЦСИО. В параграфе 2.4.4.2 изложены общие соображения по созданию Ш-ЦСИО, но до этого целесообразно рассмотреть фрагмент архитектуры широкополосной ЦСИО (рисунок 2.40), который заимствован из монографии [51].

Фрагмент архитектуры широкополосной ЦСИО

Рисунок 2.40

Термины, относящиеся Ш-ЦСИО, достаточно сложно изложить без подробных комментариев. На рисунке 2.40, в дополнение к терминам на русском языке, указаны также названия, принятые в тех версиях рекомендаций МСЭ, которые написаны на английском языке. Для перевода терминов, приведенных на рисунке 2.40, воспользуемся определениями из рекомендаций МСЭ G.701 [52] и I.113 [53]. Начнем с середины, то есть с термина цифровая секция (Digital section).

Цифровая секция (или цифровой участок) - совокупность средств обмена цифровыми сигналами, с установленной скоростью передачи, между двумя смежными цифровыми устройствами переключения. В качестве цифровых устройств переключения используются ЦКУ или МВК, обеспечивающие основную функцию, определенную рекомендацией МСЭ G.701 как гибкость (flexibility) при организации полупостоянных соединений цифровых каналов.

Часть цифровой секции между двумя смежными регенераторами называется регенерационной секцией. Как правило, в сети абонентского доступа регенераторы не используются, но некоторые варианты построения Ш-ЦСИО подразумевают их применение.

Тракт передачи - это вся совокупность средств обмена цифровыми сигналами, с установленной скоростью передачи, между двумя цифровыми устройствами переключения (или их аналогами), в которых осуществляется подключение терминального или коммутационного оборудования. Тракт передачи, таким образом, может содержать несколько цифровых секций.

Стратегия поэтапного формирования Ш-ЦСИО, в несколько упрощенном виде, может рассматриваться как экономичное создание трактов передачи между интерфейсами пользователь-сеть Ш-ЦСИО, расположенными на территории пристанционного участка, и АТМ коммутатором. Совокупность этих трактов образует некоторую сеть. Структура этой сети может (а на начальном этапе формирования Ш-ЦСИО, как правило, будет) отличаться от структуры сети доступа к цифровой коммутационной станции.

2.4.4.2. Вероятные сценарии создания Ш-ЦСИО

2.4.4.2.1. Небольшое предисловие

Параграф 2.4.4.2 сначала назывался «Общие рекомендации...», но мне показалось, что излагаемый материал не «тянет» на такой, достаточно ответственный, заголовок. Иными словами, все рассматриваемые ниже сценарии формирования Ш-ЦСИО нуждаются в тщательной доработке. Они, тем не менее, представляются мне любопытными как «пробный шар».

Данный параграф, строго говоря, посвящен проблемам, которые не входят в круг вопросов, рассматриваемых в монографии. Но изложение общей стратегии формирования Ш-ЦСИО необходимо для того, чтобы перейти к аспектам сети доступа. Принципы построения Ш-ЦСИО, в определенном смысле, служат введением к параграфу 2.4.4.3 «Варианты реализации сети доступа в Ш-ЦСИО».

Настоящий параграф состоит из восьми небольших фрагментов. Каждый фрагмент содержит материал, касающийся определенного сценария или этапа в процессе формирования Ш-ЦСИО. Как уже оговаривалось выше, основное внимание уделяется внедрению технологии АТМ. Этот процесс в [7, 8] назван "ATMization", что на русский язык можно перевести как ATMизация сети.

2.4.4.2.2. Технология АТМ в корпоративных сетях

Использование технологии АТМ обычно начинается в корпоративных (ведомственных или коммерческих) сетях. Такая ситуация хорошо прослеживается в ряде российских городов. Операторы корпоративных сетей заинтересованы в таких процедурах взаимодействия своих абонентов, которые обеспечивают установление соединений между интерфейсами пользователей по стандартам, принятым для широкополосной ЦСИО. Для установления соединений между пользователями разных корпоративных сетей должна быть реализована система транзитной связи.

Простейшее решение такой задачи заключается в том, что через ЦКУ транспортной сети организуется связь всех корпоративных сетей по принципу «каждая с каждой». На рисунке 2.41 показано соединение четырех корпоративных сетей (A, B, C и D) через ЦКУ. Стык между корпоративной и транзитной сетями обозначен буквой Nk. Между этими стыками образуется транзитная сеть АТМ, соединения в которой осуществляются на принципах полупостоянной коммутации. Такой вариант построения транзитной сети АТМ становится малоэффективным, когда число интерфейсов Nk превышает 3, а интенсивность обмена между корпоративными сетями не представляется существенной.

Первый вариант взаимодействия корпоративных сетей АТМ

Рисунок 2.41

Оператор, эксплуатирующий транспортную сеть, может ввести подобный вариант взаимодействия корпоративных сетей АТМ в течение достаточно короткого промежутка времени по трем основным причинам:

- во-первых, ресурсы транспортной сети, включая возможности коммутационного поля ЦКУ, будут быстро исчерпаны пользователями корпоративных сетей;

- во-вторых, доходы от продажи услуг, как правило, существенно выше, чем прибыль от передачи в аренду ресурсов транспортной сети;

- в-третьих, в телекоммуникационной системе общего пользования постепенно формируются требования к созданию собственной сети АТМ.

В результате, Оператору выгоднее установить АТМ-коммутатор, обеспечивающий в первое время взаимодействие корпоративных сетей. Это решение показано на рисунке 2.42 также для четырех корпоративных сетей АТМ.

Второй вариант взаимодействия корпоративных сетей АТМ

Рисунок. 2.42

АТМ-коммутатор можно рассматривать как первый элемент сети АТМ общего пользования. Он, кроме функций объединения корпоративных сетей, может использоваться для взаимодействия последних с ТФОП и другими сетями. АТМ-коммутатор способен выполнять функции объединения ЛВС и сопряжения сетей ПД, работающих по различным стандартам.

2.4.4.2.3. Технология АТМ в сети общего пользования

Итак, установка первого АТМ-коммутатора обеспечивает эффективное объединение корпоративных сетей и, одновременно, служит “первым кирпичиком” в здании перспективной телекоммуникационной системы общего пользования. Развитие сети АТМ общего пользования заключается в установке новых АТМ-коммутаторов и расширении выполняемых ими функций. Первый АТМ-коммутатор выполняет роль транзитного узла. Принципы включения второго и следующих АТМ-коммутаторов определяют стратегию создания сети АТМ общего пользования. Можно выделить три основные варианта введения следующих АТМ-коммутаторов:

- на уровне автоматической междугородной телефонной станции (АМТС), что означает формирование междугородной сети АТМ общего пользования;

- на уровне первого АТМ-коммутатора, что приводит к развитию транзитной сети на местном уровне телекоммуникационной системы;

- на нижнем уровне иерархии телекоммуникационной системы, что ведет к организации сети АТМ на участке абонентского доступа.

Выбор одного из этих вариантов либо реализация двух или даже всех трех сценариев одновременно определяется условиями каждого конкретного проекта. Для разработки наиболее вероятного сценария развития сети АТМ общего пользования необходимо учитывать следующие соображения:

- основной трафик, использующий технологию АТМ, замыкается в пределах местной сети;

- магистральная транспортная сеть России, в целом, не имеет в обозримой перспективе свободных ресурсов для передачи трафика широкополосной ЦСИО, которая использует технологию АТМ;

- эксплуатируемые цифровые УПАТС, ЛВС и другие средства абонентского доступа, как правило, не используют технологию АТМ.

С учетом этих положений оптимальной стратегией формирования сети АТМ общего пользования будет, в большинстве случаев, построение транзитной сети. Такая стратегия может рассматриваться как создание ядра сети АТМ, которое расширяется в двух основных направлениях: междугородная сеть и участок абонентского доступа.

2.4.4.2.4. Создание ядра сети АТМ

Общая идея ядра сети АТМ, показанная на рисунке 2.43, состоит в построении транзитной сети, которая может создаваться как новый элемент телекоммуникационной системы или заменять одноименный уровень ТФОП. На этом и ряде следующих рисунков показано меньшее (чем в предыдущем параграфе) число корпоративных сетей, но это сделано исключительно для того, чтобы иллюстрации были компактнее. В принципе, число корпоративных сетей АТМ может расти или оставаться неизменным. С другой стороны, по мере развития сети АТМ общего пользования не исключено и снижение числа эксплуатируемых корпоративных сетей.

Создание ядра сети АТМ

Рисунок 2.43

Модель состоит из восьми АТС, соединенных с тремя АТМ-коммутаторами. Каждая АТС должна опираться на один или (что лучше) два АТМ-коммутатора. Для связи АТС между собой могут использоваться пучки СЛ, имевшиеся между станциями до введения АТМ-коммутаторов (на рисунке 2.43 эти пучки не показаны). Существенно то, что основная роль АТМ-коммутаторов состоит в обслуживании нетелефонного трафика.

Все АТС должны соединяться с АМТС пучками заказно-соединительных линий (ЗСЛ) и междугородных соединительных линий (СЛМ); на рисунке такие пучки показаны только для АТС с номерами “1”, “2” и “8”. Наша модель предполагает, что в качестве АМТС используется станция с коммутацией каналов. В этом случае выход к АМТС через коммутаторы АТМ не представляется целесообразным. Тем не менее, для коммутатора АТМ под номером “I” пунктирной линией показан пучок ЗСЛ/СЛМ, который может рассматриваться как резервное направление для связи ряда АТС с АМТС. Телефонная связь, таким образом, может и далее осуществляться по алгоритмам, свойственным классической ТФОП. Это справедливо для местных сетей любой конфигурации.

В развитии ядра сети АТМ можно выделить два основных этапа, различающихся функциями, которые выполняют АТМ-коммутаторы. На первом этапе местная телефонная сеть не претерпевает кардинальных изменений. Ядро сети АТМ используется, преимущественно, для обслуживания нетелефонного трафика. В первую очередь, технология АТМ применяется в сетях обмена данными.

На втором этапе ядро сети АТМ берет на себя обработку телефонного трафика, что требует выполнения всех показателей качества обслуживания соединений, установленных соответствующими рекомендациями МСЭ [54 -56]. Такие решения, насколько мне известно, еще не апробированы в мировой практике. Возможность и целесообразность полного «поглощения» функций цифровых коммутационных станций АТМ-коммутаторами должна быть тщательно изучена.

В настоящее время целесообразно рассматривать ядро АТМ как телекоммуникационную сеть, создаваемую параллельно ТФОП, но предназначенную, в основном, для обслуживания трафика в различных системах обмена данными. Существенно то, что развитие ТФОП и сети АТМ необходимо осуществлять на базе общей транспортной сети. Это не исключает возможность использования для сети АТМ ресурсов физической среды (оптических волокон) без организации трактов STM.

2.4.4.2.5. Расширение ядра сети АТМ: размещение концентраторов

Термин «АТМ-концентратор», здесь и далее, используется для того, чтобы указать на место размещения соответствующего оборудования в телекоммуникационной сети. Такой концентратор, с точки зрения технологии АТМ, будет отличаться от коммутатора, в основном, производительностью и, возможно, перечнем поддерживаемых интерфейсов. Основное назначение АТМ-концентраторов состоит в том, чтобы экономично подключить к ядру пользователей, ориентированных на технологию АТМ. Места размещения АТМ-концентраторов будут определяться географическим расположением пользователей, которые образуют две большие группы:

- предприятия, имеющие современные телекоммуникационные сети (в частности, некоторые владельцы цифровых УПАТС);

- абоненты квартирного сектора, использующие ресурсы сети АТМ для услуг типа «Видео по заказу».

Потенциальными местами размещения АТМ-концентраторов могут быть, таким образом, здания АТС и некоторые площадки, на которых в настоящее время установлены современные цифровые УПАТС. В результате установки АТМ-концентраторов образуется сеть, показанная на рисунке 2.44.

Сеть с АТМ-концентраторами

Рисунок 2.44

Рисунок иллюстрирует возможный сценарий включения четырех АТМ-концентраторов. Первая (латинская) цифра определяет номер АТМ-коммутатора, к которому подключается концентратор. Вторая (арабская) цифра соответствует порядковому номеру концентратора. Кривые линии относятся к трактам, соединяющим коммутаторы и концентраторы. Пунктиром изображены СЛ между концентраторами и АТС. Эти СЛ целесообразно использовать для установления коммутируемых соединений между абонентами АТС и АТМ-концентраторов.

2.4.4.2.6. Расширение ядра сети АТМ: замена коммутационных станций

По мере роста услуг, поддерживаемых ядром сети АТМ, необходимо заменить или модернизировать коммутационные станции ТФОП. Краткий анализ возможных сценариев - замена или модернизация станций ТФОП - приведен чуть ниже. Это обусловлено тем, что сначала целесообразно рассмотреть вероятные изменения в структуре коммутируемой сети общего пользования.

Находящиеся в эксплуатации АТС заменяются комбинированными коммутационными станциями (ККС). Термин «ККС» использован для обозначения коммутационного оборудования, которое способно выполнять функции АТС и АТМ-коммутатора. На рисунке 2.45 показан вариант замены АТС на ККС, который не предусматривает изменение структуры существующей коммутируемой сети.

Первый вариант замены АТС комбинированными коммутационными станциями

Рисунок 2.45

Реализация данного варианта может осуществляться за счет введения коммутационного поля, основанного на технологии АТМ, в состав цифровой АТС. Возможность подобного решения определяется рядом факторов, из которых определяющим является наличие такого модуля в номенклатуре новых аппаратно-программных средств эксплуатируемой цифровой АТС.

В процессе реализации рассматриваемого варианта не изменяются структуры ни транспортной, ни телефонной сетей. Подобное решение может оказаться неоптимальным, так как введение функций обработки трафика АТМ повышает производительность ККС. С другой стороны, повышение производительности ККС позволит сократить общее число используемых станций, то есть пересмотреть структуру коммутируемой, а в ряде случаев - и транспортной, сетей.

Пример системного решения, связанного с изменением структуры коммутируемой сети, показан на рисунке 2.46. Этот вариант подразумевает, что восемь цифровых АТС постепенно заменяются четырьмя ККС, в которые включаются АТМ-концентраторы (первая цифра их номера определяет опорную ККС, а вторая - номер концентратора). Для рассматриваемого варианта замены цифровых АТС показано также введение нового концентратора под номером 1-3.

Второй вариант замены АТС комбинированными коммутационными станциями

Рисунок 2.46

Выбор оптимального варианта введения ККС, равно как и распределение долей трафика, обрабатываемого по технологиям коммутация каналов и АТМ, определяется множеством факторов, среди которых следует выделить:

- прогноз трафика, который целесообразно обрабатывать именно в сети АТМ;

- прогноз трафика, который целесообразно обрабатывать вне технологии АТМ;

- ресурсы транспортной сети, которые могут быть задействованы для переноса трафика АТМ;

- возможность включения в цифровые коммутационные станции, эксплуатируемые в модернизируемой телефонной сети, модулей, которые выполняют обработку трафика по технологии АТМ;

- технико-экономические показатели оборудования, которое может быть использовано на модернизируемой телефонной сети.

Естественно, что для решения поставленной задачи должна быть разработана методика анализа коммутируемой сети с точки зрения ее преобразования в сеть АТМ и оптимизации структуры новой сети.

2.4.4.2.7. Расширение ядра сети АТМ: иерархические аспекты

Ядро сети АТМ будет расширяться в двух направлениях. Направление «сверху вниз» подразумевает развитие сети абонентского доступа, то есть появление новых АТМ-концентраторов и другого оборудования, используемого для экономичного построения телекоммуникационной системы. Направление «снизу вверх» означает формирование междугородной сети АТМ. На рисунке 2.47 показан пример расширения ядра сети АТМ в направлении «снизу вверх».

Расширение ядра АТМ сети

Рисунок 2.47

Магистральные коммутаторы АТМ могут работать параллельно АМТС зоны, обслуживая определенные виды трафика, или заменяя АМТС, то есть переводя всю междугородную (и международную) нагрузку в сеть АТМ. В настоящее время практическое применение может найти только первый вариант. Тем не менее, в проектных решениях должна быть учтена возможность полного перевода междугородной сети на технологию АТМ.

2.4.4.2.8. Сосуществование разных видов распределения информации

Концепции обычной (узкополосной) и широкополосной ЦСИО не подразумевают полное вытеснение других телекоммуникационных технологий. Однако концепция АТМ рассматривается некоторыми авторами как универсальное решение, которое должно заменить все существующие технологии распределения информации - коммутацию каналов и пакетов. Такие утверждения основаны, скорее всего, на механическом переносе решений, оптимальных для корпоративной сети, на телекоммуникационную систему общего пользования.

На рисунке 2.48 показаны вероятные сценарии по использованию транзитной сети АТМ для обслуживания трафика, создаваемого четырьмя сетями: ТФОП, передачи данных по стандартам Frame Relay, Х.25 и SMDS (Switched Multimegabit Data Services). Сплошными линиями обозначены обязательные, а пунктирными - возможные связи.

Вероятные сценарии использования транзитной сети АТМ

Рисунок 2.48

На рисунке 2.48 показано также устройство IWF (Interworking Functions), выполняющее функции сопряжения сетей ПД, расположенных на рисунке слева от транзитной сети АТМ. Примером подобных решений можно считать сети типа MAN (Metropolitan Area Network) и WAN (Wide Area Network), если они построены на базе современных технологий. Прав, по всей видимости, автор статьи [57], рассматривая новую технологию Gigabit Ethernet как сильного конкурента АТМ на рынке обмена данными. Несомненно, что успешное продвижение всех этих технологий на телекоммуникационной рынке будет, в значительной мере, определяться их способностью гибко реагировать на быстро изменяющиеся требования со стороны информационных систем, среди которых свою доминирующую роль - в обозримой перспективе - сохранит Internet.

Для телефонных сетей (сплошная линия в верхней части рисунка) остаются непосредственные связи в пределах ТФОП. Это объясняется тем, что для столь крупной системы, как ТФОП, использование ресурсов новой сети, ориентированной на перспективные услуги, не представляется целесообразным. Обязательными считаются и связи ТФОП с транзитной сетью АТМ, что обусловлено необходимостью взаимодействия с другими телекоммуникационными сетями.

Для сети ПД, построенной на базе стандарта Frame Relay, транзитная сеть АТМ служит средством сопряжения с ЛВС и SMDS. На рисунке 2.48 кружки с номерами «1» и «2», отмечают (слева и справа от транзитной сети) возможные типы соединений. Для сети передачи данных, работающей по стандарту SMDS, показан также возможный вариант взаимодействия без использования ресурсов транзитной сети АТМ. Это обусловлено тем, что сеть SMDS работает на высоких скоростях, соизмеримых со скоростями в сети АТМ. Следовательно, существенный эффект от использования сети АТМ для услуг SMDS вряд ли возможен.

Основной вывод, вытекающий из рассмотренного примера, состоит в том, что транзитная АТМ сеть - в обозримой перспективе - не будет единственным транспортным средством для существующих и создаваемых вновь телекоммуникационных сетей. Другой важный аспект транспортной сети состоит в том, что АТМ технология может не использовать цифровые тракты, создаваемые системами передачи синхронной иерархии (SDH). На рисунке 2.4.9 приведены два варианта использования оптического кабеля (среды распространения сигналов) при введении технологии АТМ.

Два варианта использования среды распространения сигналов

Рисунок 2.49

Ресурсы оптического кабеля условно разделены на две группы волокон - S и M. Волокна первой группы уплотняются системами передачи SDH, что осуществляется в процессе создания традиционной транспортной сети. Ресурсы этой сети могут использоваться всеми коммутируемыми (вторичными) сетями: АТМ, телефонной, передачи данных, телевизионного и звукового вещания.

Волокна группы М могут быть сданы в аренду и/или использованы для создания сети АТМ, коммутаторы которой могут обмениваться информацией непосредственно по оптическому волокну. Выбор способа организации транспортной сети при введении технологии АТМ должен осуществляться с учетом общих принципов реализации всей телекоммуникационной системы и функциональных возможностей АТМ-коммутаторов.

Аналогичный вывод можно сделать и относительно других видов электросвязи. В частности, видеоинформация будет передаваться через широкополосные сети, основанные на различных телекоммуникационных технологиях. Можно, в таком контексте, ввести термин “частичная АТМ-сеть”, который будет указывать на использование одноименной технологии в своей (оптимальной) «нише». Эта “ниша”, скорее всего, будет занята сетями обмена данными и им подобными системами, мало чувствительными к перегрузкам, которые приводят к большим задержкам и потерям конвертов.

Частичная АТМ-сеть может использоваться для обмена всеми видами информации в корпоративных сетях, для услуг типа «Видео по заказу», предоставляемых вне широкополосной ЦСИО, а также в большинстве сетей ПД. Вне технологии АТМ могут остаться ТФОП, включая систему сотовой связи, а также сети телевизионного и звукового вещания.

Если имеет право на существование термин “частичная АТМ-сеть”, то следует ввести определение и для альтернативного решения. “Полной АТМ-сетью” будем называть сеть, основанную только на одноименной технологии. Такое решение может быть реализовано в пределах корпоративной сети. Для телекоммуникационной системы общего пользования создание полной АТМ-сети пока не представляется возможным и даже целесообразным. Тем не менее, по мере снижения цен на оборудование АТМ оно будет постепенно расширять сферу своего применения во многих телекоммуникационных сетях.

2.4.4.3. Варианты реализации сети доступа в Ш-ЦСИО

Соображения, изложенные в предыдущих параграфах раздела 2.4, приводят нас к ряду достаточно важных, с практической точки зрения, выводов. Во-первых, интерфейсы пользователь-сеть могут существенно различаться по пропускной способности, что, в свою очередь, допускает применение весьма широкой гаммы средств для построения сети доступа. Во-вторых, пользователям Ш-ЦСИО могут потребоваться как симметричные (по пропускной способности в обоих направлениях обмена информацией), так и асимметричные интерфейсы. В-третьих, средняя длина линии между интерфейсом пользователь-сеть и оборудованием АТМ, в план нумерации которого входит этот интерфейс, будет заметно меняться по мере цифровизации и АТМизации телекоммуникационной системы общего пользования.

Эти три аспекта весьма важны для выбора принципов создания сети доступа к ресурсам Ш-ЦСИО. Необходимо также понять соответствующие тенденции в развитии Ш-ЦСИО, что позволит принимать перспективные системные решения. Естественно, детальный анализ вероятных сценариев эволюции Ш-ЦСИО в настоящее время выполнить невозможно. Но некоторые основные тенденции, существенные с точки зрения сети доступа, предугадать не так уж и сложно. Три очевидных (и интересных для нас в контексте данного параграфа) направления в развитии Ш-ЦСИО приведены на рисунке 2.50.

Тенденции эволюции Ш-ЦСИО и сети доступа

Рисунок 2.50

Первая тенденция заключается в постепенном росте доли симметричных (по пропускной способности) интерфейсов пользователь-сеть. Асимметричность интерфейса пользователь-сеть в Ш-ЦСИО относится к широкополосным каналам. Для передачи речи и данных на скоростях порядка 64 кбит/с интерфейс всегда будет симметричным. Видеоинформация - на начальном этапе создания Ш-ЦСИО - передается, в основном, от центра распределения сигналов к терминалу. В противоположном направлении передаются сообщения типа “запрос”, для которых высокая пропускная способность в интерфейсе пользователь-сеть не нужна.

Ситуация будет постепенно изменяться. В частности, услуги Ш-ЦСИО типа “видеоконференция” ориентированы на симметричные широкополосные каналы. Расширение области применения подобных услуг приведет к заметному повышению доли симметричных интерфейсов пользователь-сеть. С другой стороны, можно уверенно утверждать, что в Ш-ЦСИО даже в далекой перспективе не потребуется реализация 100% симметричных интерфейсов.

Вторая тенденция - следствие двух, отчасти противоположных, процессов. Первый процесс, в свою очередь, порождается несколькими факторами, из которых следует выделить два основных: повышение качества передачи видеоинформации и предстоящее использование телекоммуникационных сетей для передачи информации, связанной со всеми органами чувств человека. В результате, требуемая скорость передачи сигналов растет. Второй процесс отражает успехи в области сжатия видеоинформации и позволяет использовать все более низкие скорости передачи сигналов. Тем не менее, общая тенденция заключается в постепенном повышении скорости передачи информации через интерфейс пользователь-сеть.

На рисунке 2.50, в названии третьей тенденции, использованы слова «средняя длина линии». В данном случае речь идет об индивидуальной линии, расположенной между терминалом пользователя (или группой оконечных устройств) и неким устройством (например, концентратором или мультиплексором), соединенной с коммутационной станцией общим для нескольких абонентов пучком каналов. Как правило, индивидуальная линия представляет собой двухпроводную физическую цепь. На рисунке 1.1, в нижней его половинке, эта часть сети доступа трактуется как совокупность абонентских линий, что является переводом слов «Loop Network». Попробуем уточнить место и роль индивидуальной линии в сети абонентского доступа, для чего воспользуемся приведенной на рисунке 2.51 моделью.

Оценка средней длины линий в сети абонентского доступа

Рисунок 2.51

В левой части рассматриваемой модели показана аналоговая РАТС, к которой ТА подключаются двухпроводными физическими линиями. Будем считать, что нам известны число АЛ (N) и длина каждой из них (lk). Тогда среднее значение длины индивидуальной линии для такой схемы подключения ТА (L1) определяется очевидным соотношением, приведенным на рисунке 2.51, левый верхний угол.

В процессе замены аналоговой РАТС на цифровую МС, по всей видимости, расширятся границы пристанционного участка. Это объясняется тем, что Оператору, при цифровизации местных сетей, выгодно устанавливать коммутационные станции большой емкости. Среднее расстояние между терминалом и коммутационной станцией (L2), в этом случае, возрастет, то есть L2 > L1.

Величина L2, в свою очередь, состоит из двух слагаемых - Li и Lg, которые определяют средние значения длин для индивидуальной линии (от ТА до концентратора - К) и группового тракта (от концентратора до МС) соответственно. Если еще раз вернуться к рисунку 1.1, то групповому тракту - с определенными допущениями - я бы поставил в соответствие «Сеть переноса» (Transfer Network). Важной особенностью современных сетей абонентского доступа можно считать тот факт, что существенно сокращается длина индивидуальной линии, то есть Lg << L1. Это означает, что физическая цепь становится очень короткой. Можно отметить две важные особенности, присущие коротким АЛ:

- возможность использования технологии типа xDSL для организации цифровых трактов с высокой пропускной способностью;

- сравнительно небольшие затраты при замене абонентских кабелей с медными жилами на ОК.

Оба этих фактора весьма важны с точки зрения эффективной организации сети доступа к ресурсам Ш-ЦСИО. Теперь можно перейти к основным вариантам подключения терминального оборудования к Ш-ЦСИО. На рисунке 2.52 показаны четыре способа создания сети доступа к АТМ-коммутатору.

Четыре варианта подключения

терминального оборудования

Рисунок 2.52

Вариант I представляет наиболее простой случай - непосредственное включение терминального оборудования Ш-ЦСИО в АТМ-коммутатор. Если воспользоваться аналогией из классической телефонии, то данное решение можно рассматривать как создание “зоны прямого питания” в сети абонентского доступа. Более того, область целесообразного применения варианта I практически совпадает с окружностью, радиус которой определяет границы “зоны прямого питания”. Различие между рассматриваемым вариантом и его аналогом заключается в том, что в “зоне прямого питания” используются однородные физические АЛ, а среда распространения сигналов в сети доступа для Ш-ЦСИО будет выбираться с учетом ряда факторов. Мы вернемся к этому вопросу, воспользовавшись рисунком 2.53, но сначала необходимо завершить анализ оставшихся вариантов подключения терминального оборудования в Ш-ЦСИО.

Подключение терминального оборудования Ш-ЦСИО посредством выносного концентратора иллюстрирует вариант II. Концентратор, в принципе, может находиться в любой точке той местной сети, где расположен АТМ-коммутатор. Теоретически, концентратор и коммутатор не обязательно должны находиться в одной местной сети. Передача информации между концентратором и АТМ-коммутатором будет осуществляться по цифровым трактам. Скорость в соответствующем интерфейсе должна выбираться из номиналов, которые стандартны для технологии АТМ. Выбор конкретного значения зависит от требований, диктуемых пользователями, которые подключаются к выносному концентратору.

Принципы построения фрагмента сети доступа между терминальным оборудованием и концентратором будут практически те же, что и для варианта I. Такая ситуация характерна и для всех следующих схем подключения терминального оборудования к АТМ-коммутатору. По этой причине анализ фрагмента сети доступа между терминальным оборудованием и промежуточным устройством, которое подключается к АТМ-коммутатору, приводится после рассмотрения всех четырех вариантов создания сети доступа в Ш-ЦСИО.

Вариант III иллюстрирует подключение широкополосных терминалов к АТМ-коммутатору через транспортную сеть. Если читатель на минуточку вернется к рисунку 1.6 (фрагмент, показывающий подключение мультиплексора передачи данных к центру коммутации пакетов), то он найдет хорошую аналогию, позволяющую сделать следующие комментарии:

- некоторые потенциальные пользователи Ш-ЦСИО будут включаться в коммутационные станции, которые не содержат никаких технических средств, способных обрабатывать конверты АТМ;

- формирование спроса на подключение к Ш-ЦСИО начнется на той фазе развития телекоммуникационной системы, когда уже будет создана цифровая транспортная сеть с большой пропускной способностью;

- потенциальные пользователи Ш-ЦСИО могут, через оборудование ЦКУ или МВК, включаться в АТМ-коммутатор подобно тому, как мультиплексор передачи данных (рисунок 1.6) выходит к центру коммутации пакетов.

Итак, функциональные возможности ЦКУ и МВК позволяют “приблизить” определенную группу потенциальных пользователей к тому АТМ-коммутатору, который обслуживает трафик Ш-ЦСИО в телекоммуникационной системе общего пользования. Вариант IV показывает весьма важное, с практической точки зрения, включение в АТМ-коммутатор пользователей Ш-ЦСИО, работающих в корпоративной сети.

Строго говоря, необходимо рассматривать два аспекта подключения пользователей корпоративной сети к АТМ-коммутатору, находящемуся в телекоммуникационной системе общего пользования. Если корпоративная сеть содержит средства обработки конвертов АТМ, то необходимо рассматривать межсетевой стык, обозначенный на рисунках 2.41 и 2.42 буквой Nk. Если же такой возможности корпоративная сеть не имеет, то включение ее пользователей Ш-ЦСИО в АТМ-коммутатор может осуществляться за счет ресурсов двух транспортных сетей.

Перейдем к уже упомянутому выше рисунку 2.53. На этом рисунке можно подробно рассмотреть фрагмент сети доступа Ш-ЦСИО, который относится к участку между интерфейсом пользователь-сеть и средствами подключения терминального оборудования к АТМ-коммутатору. В качестве таких средств могут, как показано на рисунке 2.52, использоваться концентраторы АТМ или кроссовое оборудование транспортной сети.

Реализация участка сети доступа между терминальным оборудованием и устройством подключения к АТМ-коммутатору

Рисунок 2.53

Три варианта реализации рассматриваемого фрагмента сети доступа различаются используемой средой распространения сигналов. В частности, вариант “А” не подразумевает замены абонентского кабеля с медными жилами. Естественно, что такое решение накладывает определенные ограничения на скорость обмена информацией. В ряде случаев эксплуатируемые линейные сооружения будут способны поддерживать только асимметричные интерфейсы пользователь-сеть. Принимая решение о реализации варианта “А” (или ему подобного) и Оператор, и пользователь должны отдавать себе отчет, как о его преимуществах (низкие затраты и возможность быстро ввести некоторые услуги Ш-ЦСИО), так и о недостатках (в перспективе, скорее всего, все равно придется прокладывать ОК).

Вариант “В” представляет собой пример практического воплощения стратегии использования ОК, названной ранее FTTOpt. Оборудование преобразования оптических сигналов в электрические (о/е) устанавливается в точке сопряжения соответствующих кабелей. Местом размещения этого оборудования может, например, стать распределительный шкаф. Чем ближе место установки оборудования преобразования к интерфейсу пользователь-сеть, тем полнее могут быть реализованы функциональные возможности Ш-ЦСИО. Вполне очевидно, что рассматриваемый вариант допускает более высокие скорости обмена информацией между корреспондирующими терминалами.

Однородный тракт передачи сигналов, построенный на ОВ, показан - для рассматриваемого фрагмента сети доступа - как вариант “С”. Конечно, подобный сценарий весьма перспективен с точки зрения пропускной способности интерфейса и качества передачи информации. Несомненно, что это решение будет самым дорогим из всех возможных сценариев, касающихся модернизации сети абонентского доступа.

Мне кажется, что все три варианта будут сосуществовать в течение весьма длительного периода, отсчет которого можно вести с первых дней коммерческой эксплуатации Ш-ЦСИО. При этом, основная часть пользователей Ш-ЦСИО остановится - по своему выбору или из-за невозможности быстрой прокладки ОК - на варианте “А”. Далее начнется процесс экспансии ОК, в котором можно выделить две составляющие:

- спрос определенной группы пользователей Ш-ЦСИО на высокие скорости обмена информацией;

- реализация планов модернизации сети доступа, вызванных необходимостью замены старых абонентских кабелей, что только косвенно связано с введением услуг Ш-ЦСИО.

Завершая этот раздел, я хотел бы подчеркнуть весьма существенное, для эффективного развития Ш-ЦСИО, положение. Оно заключается в том, что используемые Операторами и их клиентами технические средства должны отвечать требованиям, сформулированным в стандартах ETSI, рекомендациях МСЭ и документах ATM Forum. Системно-сетевые решения целесообразно принимать на основе того опыта, который накоплен Операторами в развитых странах.

2.5. Доступ к телекоммуникационной системе по эфиру

2.5.1. Несколько предварительных замечаний

Хочу сразу предупредить читателей (разумеется, речь идет о тех, кто еще не утратил интерес к монографии), что в разделе 2.5 будут рассматриваться только сетевые вопросы доступа к телекоммуникационной системе по эфиру. Более того, основное внимание уделяется технологии Wireless Local Loop (WLL), то есть принципы построения таких интересных телекоммуникационных систем, как, например, сотовые сети для связи с подвижными объектами, в разделе 2.5 представлены не будут.

Здесь нам необходимо немного отвлечься для того, чтобы уточнить значение слов «сотовая сеть». У весьма значительной части специалистов эти слова ассоциируются с сетями связи, обслуживающими мобильных абонентов. Такая ассоциация справедлива для большинства современных сетей связи с подвижными объектами. Но сам принцип построения сот, предназначенный для многократного использования выделенных Оператору частот [2], используется и в стационарных сетях связи. А в некоторых перспективных сетях связи с подвижными объектами, находящимися, в частности, на борту самолета или теплохода, будут использоваться топологии, отличные от сотовой структуры. В разделе 2.5 слова «сотовая сеть» будут употребляться для того, чтобы акцентировать внимание на принципах использования частотных ресурсов в пределах телекоммуникационной системы .

В последнее время в отечественных журналах по электросвязи появилось много работ, посвященных технологии WLL. В этих публикациях можно найти несколько различных переводов выражения “Wireless Local Loop”. В данном разделе эти три слова переводятся как “беспроводная АЛ”, но чаще используется аббревиатура WLL, уже ставшая для многих специалистов привычной. Кроме аббревиатуры WLL - применительно к большинству радиотехнических средств, используемых в стационарных сетях связи, - в технической литературе можно встретить также акронимы FWA (Fixed Wireless Access) и RLL (Radio Local Loop).

Вопросы, которые излагаются в следующих параграфах раздела 2.5, можно разделить на три взаимосвязанных направления. На рисунке 2.54 эти направления указаны на трех гранях кубика.

Три направления в использовании систем беспроводного доступа

Рисунок 2.54

Верхняя грань кубика, получившая название «Экономичное развитие стационарных сетей электросвязи», иллюстрирует тот аспект использования радиотехнических средств, который наиболее интересен Оператору. Конечно, в этом, прямо или косвенно, заинтересованы и все остальные участники телекоммуникационного рынка. Технологии WLL присущи, при определенных условиях применения радиотехнического оборудования, преимущества чисто экономического характера (мы еще вернемся к этому вопросу, когда будем рассматривать следующий рисунок). Итак, одним из стимулов использования технологии WLL можно считать поиск наиболее эффективных путей при создании новых или модернизации существующих сетей абонентского доступа. В таком контексте никакие аспекты мобильности (терминала или абонента), как правило, не играют существенной роли.

Абонентам, при соблюдении приемлемых качественных показателей, не важен способ доступа в стационарную сеть связи - посредством кабельных линий или радиотехнических средств. Иная картина складывается в том случае, когда абонент заинтересован в функциональных возможностях мобильности терминала или персональной мобильности - фронтальная грань кубика. Строго говоря, поддержка функций мобильности может быть привлекательной и для Операторов (с финансовой точки зрения). Тем не менее, реализация подобных услуг обусловлена именно спросом потенциальных абонентов.

В интеграции стационарных и мобильных сетей связи (последняя грань кубика) заинтересованы и абоненты, и Операторы, хотя мотивация у каждого участника телекоммуникационного рынка будет своя. Абонент более всего заинтересован в услуге типа “Персональный номер” [58, 59] и использовании минимального числа терминалов. Оператор вправе ожидать весьма существенного снижения как удельных (в расчете на один порт) капитальных затрат, так и эксплуатационных расходов. Подобная тенденция характерна для процессов интеграции в системе электросвязи.

2.5.2. Оценка экономической эффективности технологии WLL

Давайте начнем этот параграф с того, что обратимся к анонсированному выше рисунку 2.55, который поможет в обсуждении некоторых экономических преимуществ технологии WLL перед проводными (стационарными) средствами абонентского доступа. Подобные иллюстрации приводятся в ряде работ, касающихся тех или иных аспектов экономической эффективности технологии WLL; из отечественных публикаций можно назвать статью [60]. На рисунке 2.55 используется общепринятая модель, но вводится ряд обозначений, которые позволяют уточнить наиболее существенные, с точки зрения сетей абонентского доступа, моменты.

Экономическая эффективность технологии WLL

Рисунок 2.55

Используемая модель основана на предположениях, весьма близких к реальным задачам, с которыми приходится сталкиваться Операторам:

- требуется подключить к действующей АТС новую группу абонентов, численность которой обозначена величиной N;

- работы по реализации этой задачи, начинающиеся в момент времени t0, могут выполняться по двум сценариям, которые основаны на использовании проводных или радиотехнических средств;

- для сценария, подразумевающего применение проводных средств, процесс создания сети абонентского доступа может быть представлен кривой Is, которая, в определенной мере, отражает инвестиционный цикл (значение Iso определяет величину начальных затрат);

- для сценария, основанного на применении технологии WLL, процесс создания сети абонентского доступа представим кривой Iw, а значение Iwo также определяет величину начальных затрат;

- процесс создания сети абонентского доступа на базе проводных средств полностью завершится к моменту t2, а использование технологии WLL позволит подключить абонентов в АТС к моменту t1;

- оборудование включается в коммерческую эксплуатацию только после завершения всех работ, то есть на отрезке времени [t1, t2] доходы могут быть получены только при использовании технологии WLL (соответствующий процесс представлен кривой Dw).

Последние два утверждения не следует понимать буквально. Речь идет о законченном фрагменте в пределах сети абонентского доступа. Несомненно, при использовании проводных средств может осуществляться поэтапное подключение абонентов по мере готовности отдельных направлений.

Практически все функции и величины, показанные на рисунке 2.55, выбраны произвольно. Это замечание касается моментов времени t1 и t2, характера кривых Is ,Iw и Dw, значений Iso и Iwo. Несомненно то, что t1 < t2, а в большинстве случаев справедливо неравенство t1 << t2. Одним из оснований для такого утверждения можно считать результаты , приведенные в материале фирмы QUALCOMM [61]. В этой работе приводятся оценки, касающиеся времени создания сети абонентского доступа емкостью 1000 номеров. Если для построения сети абонентского доступа используются кабели связи, то работа займет 100 дней. При использовании технологии WLL (в [61] речь идет об оборудовании CDMA) сеть абонентского доступа может быть введена в эксплуатацию за 5 дней.

В каждом конкретном случае расположение точек t1 и t2 будет зависеть от множества факторов, но для большинства реальных проектов технология WLL даст неоспоримое преимущество с точки зрения возврата инвестиций. Это не означает, что при сопоставимых ценах (и даже в ситуации, когда радиотехническое оборудование имеет преимущество по стоимости) всегда целесообразно ориентироваться на технологию WLL. Соображения, которыми должен руководствоваться Оператор, укладываются в общую схему, приведенную в параграфе 2.1.2.2 (рисунки 2.5 и 2.6). Иными словами, Оператору необходимо «заглянуть» в будущее создаваемой им сети абонентского доступа и ответить на очень важный вопрос: «Будет ли сеть абонентского доступа, построенная на базе выбранного мною оборудования, отвечать перспективным требованиям пользователей к телекоммуникационной системе?»

Продолжая рассуждения, связанные с экономической эффективностью технологии WLL, целесообразно обратить внимание на рисунок 2.56, заимствованный из [62], но дополненный некоторыми деталями. На этой картинке показаны две кривые, отражающие качественную зависимость удельной (в расчете на один порт) стоимости сети абонентского доступа от поверхностной плотности размещения обслуживаемых абонентов.

Стоимость сети абонентского доступа при разной поверхностной плотности размещения абонентов

Рисунок 2.56

Точка sо соответствует такому значению поверхностной плотности, при котором затрат в обоих вариантах одинаковы. Поведение кривых не требует каких-либо комментариев. Следует отметить тот факт, что технология WLL в [62] рассматривалась применительно к разработанному японскими специалистами стандарту PHS (Personal Handy-phone System). Тем не менее, можно утверждать, что поведение кривых, показанных на рисунке 2.56, инвариантно к конкретной реализации системы WLL.

В нижней части рисунка 2.56 указаны наиболее вероятные сферы использования различных вариантов построения сети абонентского доступа. Технология WLL весьма эффективна в сельской местности, что подтверждается рядом публикаций [63, 64]. В пригородной зоне технология WLL также может считаться конкурентоспособной. В городских условиях более привлекательным вариантом создания сети доступа остается использование абонентского кабеля.

Естественно, что такие утверждения справедливы только в отношении ситуаций, типичных для сельской местности, пригородной зоны и города. Мне известны экономичные решения, связанные с использованием технологии WLL в крупных городах с высокой поверхностной плотностью размещения абонентов. Могут, вероятно, встречаться и противоположные ситуации, когда в сельской местности с достаточно низкой поверхностной плотностью размещения абонентов целесообразно прокладывать кабельные линии. Иными словами, в каждом конкретном случае необходимо просчитывать возможные варианты.

Если рисунок 2.56 отражает только качественные аспекты экономической эффективности технологии WLL, то следующая иллюстрация [60] позволяет обсудить некоторые численные оценки. Во-первых, любопытна структура затрат на создание сети за счет использования проводных средств (абонентский кабель) и радиотехнического оборудования (технология CDMA). Будем считать, что диаграммы, приведенные на рисунке 2.57, достоверны, то есть технология WLL, в большинстве случаев, обеспечивает снижение затрат на создание сети доступа примерно на 25%.

Структура затрат для трех вариантов создания сети абонентского доступа

Рисунок 2.57

Во-вторых, интересен тот факт, что комбинированное решение (проводные и радиотехнические средства) также позволяет экономично строить сети абонентского доступа. В-третьих, полезны оценки, касающиеся распределения затрат между основными элементами беспроводной системы связи - базовыми станциями и абонентским оборудованием.

В [65] приводится график, из которого следует, что при расстоянии между помещением абонента и МС более 1 км технология WLL становится более выгодной с точки зрения затрат на сеть доступа. В этом примере, к сожалению, не упоминается поверхностная плотность размещения потенциальных абонентов, а рисунок 2.56 не содержит информации, касающейся расстояния между МС и включаемыми в нее терминалами. В [66] приведен интересный график, показанный на рисунке 2.58. Кривая, соответствующая 1996 году, дает иную - по сравнению с данными статьи [65] - оценку преимущества технологии WLL по критерию стоимости. Судя по ряду других публикаций, данные, опубликованные в [66], более достоверны.

Оценка эффективности технологии WLL

Рисунок 2.58

Многие специалисты с оптимизмом смотрят на перспективы расширения рынка технологии WLL [67, 68]. Ожидается, в частности, что к 2000 году порядка 20% вновь устанавливаемых АЛ будут основаны на технологии WLL. Широкое использование беспроводных систем связи прогнозируется как в развитых, так и в развивающихся странах. Такие прогнозы, в первую очередь, стимулируются экономичностью технологии WLL.

Очень смелые, на мой взгляд, оценки прозвучали на уже упоминавшемся в параграфе 1.5.5 семинаре «Лаборатории Белла - Прошлое. Настоящее. Будущее». Авторы этих оценок считают, что к 2010 году только 50% абонентов будут использовать проводные средства абонентского доступа. Следовательно, 50% всех абонентов предпочтут беспроводные технологии. Правда, во вторую группу входят также абоненты сотовых сетей и СПС.

Очень интересный и достаточно подробный анализ экономических аспектов технологии WLL приведен в уже упоминавшемся ранее материале фирмы QUALCOMM [61]. Хотя этот анализ направлен на то, чтобы подчеркнуть преимущества метода CDMA, приведенные в [61] результаты носят более общий характер. Мне показалась целесообразным, опуская графический материл, которым изобилует материал QUALCOMM, привести некоторые выдержки из раздела «Заключение»:

- оборудование WLL (здесь и далее рассматривается только вариант CDMA) монтируется примерно в двадцать раз быстрее, чем создается сеть абонентского доступа на базе линейно-кабельных сооружений;

- сеть доступа, построенная на оборудовании WLL, в среднем, на 55% дешевле по сравнению с традиционным вариантом, когда используются абонентские кабели;

- эксплуатационные затраты для беспроводной сети абонентского доступа примерно на 38% меньше, чем для варианта, подразумевающего применение линейно-кабельных сооружений.

Подобные оценки представляются мне весьма интересными и полезными, так как позволяют уяснить место беспроводных технологий как в телефонной, так и в других сетях электросвязи [69]. С другой стороны, я бы хотел обратить внимание читателя на то, что результаты, приведенные в параграфе 2.5.2, нельзя принимать безоговорочно. В каждом конкретном случае необходим детальный анализ, включающий расчеты технико-экономических показателей на весь «цикл жизни» создаваемой сети абонентского доступа.

2.5.3. Основные сценарии построения сети абонентского доступа

В этом параграфе будут рассмотрены три сценария, предусматривающих использование технологии WLL при построении (или модернизации) сети абонентского доступа. Хочу сразу же оговориться, что эти три сценария не охватывают все возможные варианты применения технологии WLL в современной и перспективной телекоммуникационных системах. С другой стороны, рассматриваемые ниже сценарии иллюстрируют возможные решения наиболее актуальных (на мой взгляд) задач, стоящих перед Операторами российской ТФОП.

Первый сценарий, показанный на рисунке 2.59, касается сельской связи. В параграфе 2.5.3 все иллюстрации состоят из двух частей. Слева приводится рассматриваемый фрагмент сети, а справа - предлагаемое решение задачи.

Замена сельских АТС базовыми станциями WLL

Рисунок 2.59

Фрагмент СТС, изображенный в левой части рисунка 2.59, образован шестью аналоговыми АТС. Все эти станции (ЦС, УС и четыре ОС) подлежат замене. Будем считать, что проектировщик нашел оптимальное решение, заключающееся в следующем:

- модернизация СТС начинается с замены старой аналоговой ЦС на современную цифровую коммутационную станцию;

- узловой район ликвидируется за счет замены УС на цифровую ОС, в которую включаются концентраторы (К1 и К2), устанавливаемые вместо демонтируемых аналоговых ОС3 и ОС4;

- аналоговые ОС1 и ОС2 демонтируются, а их абоненты обслуживаются радиотехническим оборудованием, использующим технологию WLL.

В правой части рисунка 2.59 показаны три БС; а для первой из них обозначена обслуживаемая территория. Число «3» выбрано произвольно. В зависимости от конкретных условий и выбранного типа оборудования может потребоваться установка одной, двух или более БС. Существенно то, что в результате такой модернизации СТС образуются зоны или анклавы, в пределах которых абоненты ТФОП обслуживаются без использования какого-либо стационарного оборудования.

Следующий сценарий использования технологии WLL иллюстрирует возможность включения в местную телефонную сеть абонентских групп, которые, в силу каких-либо причин, не могут обслуживаться ближайшими к ним коммутационными станциями. На рисунке 2.60 этот сценарий показан для ГТС, состоящей из четырех МС. На территории пристанционного участка каждой МС есть некая зона, обозначенная как Zi, в границах которой расположены потенциальные абоненты ТФОП. Подключение новых абонентов может осуществляться за счет использования технологии WLL по сценарию, который направлен на создание «распределенной» сети абонентского доступа.

«Распределенная» сеть абонентского доступа

Рисунок 2.60

Прилагательное «распределенная», в данном случае, использовано для того, чтобы подчеркнуть специфическое размещение абонентов, подключаемых к местной телефонной сети. Мы опять будем считать, что проектировщик нашел оптимальное решение, изображенное в правой части рассматриваемой модели. Это решение заключается в реализации следующего плана:

- для обслуживания всех групп потенциальных абонентов достаточно установить две БС;

- эти БС целесообразно включить в новую коммутационную станцию (МС5), специально устанавливаемую для обслуживания новых абонентов.

Такое решение может быть оправданным, если эксплуатируемые МС не имеют свободной номерной емкости, достаточной для включения новых абонентов ТФОП. Заметим, что МС5 может (и, как правило, будет) обслуживать и абонентов, присоединяемых к ней стационарными средствами связи.

Третий сценарий показывает возможность создания сети абонентского доступа за счет использования технологии WLL. На рисунке 2.61 (левая часть) изображена гипотетическая сеть абонентского доступа, состоящая из шести МВК. Данная сеть абонентского доступа создается на базе существующей кабельной канализации. Прокладке кабеля между тремя парами смежных МВК препятствуют естественные причины. В предложенной модели примерами таких препятствий служат овраг, парк и водная преграда.

Использование технологии WLL для построения сетей доступа с кольцевой структурой

Рисунок 2.61

Предлагаемое решение (правая часть рисунка 2.61) состоит в том, что вместе с каждым МВК устанавливается и БС, контроллер которой расположен в одном помещении с МС. В результате можно образовать три кольца. Тракты, выполняющие эту задачу, образованы на базе технологии WLL; на рисунке 2.61 они показаны пунктирными линиями.

Напомним, что в отсутствие отказов и перегрузок надобность в кольцевой структуре отпадает. Иными словами, поперечные связи, формирующие кольцо, нужны на определенное время - в период ликвидации последствий отказа или до окончания периода перегрузки пучка СЛ. Для сети абонентского доступа необходимо создать несколько кольцевых структур (в рассматриваемой модели - три), При использовании абонентских кабелей или РРЛ резерв пропускной способности в одном кольце не может быть использован в другом кольце.

Иная ситуация складывается при использовании технологии WLL. Контроллер БС, получая информацию из системы управления МС, может выделить практически все имеющиеся ресурсы на одно направление. Это означает, что оборудование, использующее технологию WLL, способно поддерживать максимально высокое качества обслуживания вызовов в сети абонентского доступа, когда в ней происходят отказы каких-либо элементов или возникают перегрузки отдельных пучков СЛ.

Три сценария применения технологии WLL в сетях абонентского доступа, кратко рассмотренные в этом параграфе, свидетельствуют о перспективности использования радиотехнического оборудования для ГТС и СТС. Конечно, приведенные рассуждения носят качественный характер. Их необходимо подтвердить (или опровергнуть) соответствующими расчетами. Я надеюсь решить эту задачу в следующей книге, посвященной методам расчета сетей абонентского доступа.

2.5.4. Сеть абонентского доступа, основанная на технологии LMDS

Совсем недавно в технической литературе появились публикации [70, 71] в которых рассматриваются различные аспекты применения двух технологий - MMDS (Multichannel Multipoint Distribution Services) и LMDS (Local Multipoint Distribution Services). Систему MMDS иногда называют беспроводным КТВ (Wireless Cable). Это название мне представляется более удачным, чем перевод словосочетания «Multichannel Multipoint Distribution Services» - услуги многоканального распределения (информации) для множества терминалов. Технологию LMDS часто именуют сотовым телевидением. Такая трактовка, отражающая одну их основных идей LMDS, также лучше, чем перевод слов Local Multipoint Distribution Services - услуги распределения (информации) для группы терминалов в границах местной сети.

Оборудование MMDS поддерживает 33 аналоговых канала телевидения. Радиус покрытия обычно составляет 35 миль (порядка 56 км). Диапазон вещания лежит в области 2,5 ГГц. Приемная антенна имеет диаметр 24 дюйма (примерно 61 см) и располагается у абонента. Система MMDS не предназначена для поддержки интерактивных услуг. Поэтому параграф 2.5.4 посвящен только технологии LMDS.

Структура сети, основанной на оборудовании LMDS, действительно напоминает топологию сотовой сети, используемой для связи с подвижными объектами. Радиус покрытия в системе LMDS (размеры одного сота) составляет 3 мили, то есть примерно 4,8 км. Для обслуживания территории большего размера необходимо организовывать несколько сот. Принципы частотного планирования схожи с правилами, принятыми для сотовых сетей.

Система LMDS имеет пропускную способность в четыре раза больше, чем MMDS. Кроме того, в системе LMDS обеспечиваются двухсторонние каналы для телефонной связи, обмена данными и получения (в том числе, - по заказу) видеоинформации. Для работы LMDS определен диапазон 28 ГГц. Приемная антенна, расположенная в помещении абонента, имеет размеры 6,5 х 6,5 дюймов (16,51 х 16,51 см).

Система LMDS, подобно классической сотовой сети, состоит из следующих основных элементов:

- БС (базовая станция), обеспечивающая обмен информацией в пределах одного сота;

- коммутационное оборудование, предназначенное для доступа к серверам LMDS и взаимодействия с другими сетями электросвязи;

- комплекс терминального оборудования, который обеспечивает доступ пользователей к услугам электросвязи;

- система технической эксплуатации для поддержки работоспособности оборудования.

На рисунке 2.62 показана упрощенная структура системы LMDS, отражающая, в основном, принципы связи между БС и терминальным оборудованием пользователя. Эта модель основана на материалах статьи специалистов Alcatel, опубликованной в журнале Electrical Communication - 3rd Quater 1994.

Структура телекоммуникационной системы LMDS

Рисунок 2.62

Трансивер обеспечивает прием и передачу передает сигналов в пределах сота, который делится на сектора. Каждый сектор “обслуживает” определенную группу абонентов. С антенны сигнал поступает на преобразователь, где происходит разделение информации на два потока, которые условно можно назвать узкополосным и широкополосным.

Узкополосные сигналы относятся к трафику, обслуживаемому ТФОП и ЦСИО. Широкополосная информация представлена, в рассматриваемой модели, телевизионными сигналами. Эти сигналы могут приниматься на бытовой телевизор, но для этого они пропускаются через специальную приставку.

На рисунке 2.62 показаны соединения трансивера, расположенного на БС, с двумя видами серверов через узкополосный и широкополосный коммутаторы. В системе LMDS такие соединения могут реализовываться различными способами, что зависит от ряда факторов:

- размеров и географических особенностей обслуживаемой территории;

- численности потенциальных абонентов и характера их распределения в границах обслуживаемой территории;

- технических и экономических характеристик оборудования, используемого для построения системы LMDS.

В самом общем виде структура фрагмента системы LMDS на участке между БС и серверами приведена на рисунке 2.63. Эта модель является универсальной с точки зрения создаваемой системы. Оставляя один пункт распределения информации (коммутационное оборудование) и одну БС, можно получить структуру системы LMDS минимальной конфигурации. Выбор оптимальной структуры системы LMDS осуществляется на этапе ее проектирования.

Структура системы LMDS на участке

базовая станция - серверы

Рисунок 2.63

Затемненная часть в коммутационном оборудовании «1» и «2» обозначает широкополосный коммутатор, дополняющий традиционное для телефонных станций ТФОП цифровое коммутационное поле. В модели показано N серверов, которые могут быть распределены произвольным образом по территории, обслуживаемой сетью LMDS. Система технической эксплуатации и информационной поддержки обеспечивает заданные показатели работы как средств электросвязи, так и специализированного программного обеспечения серверов LMDS.

Система LMDS позволяет ввести ряд дополнительных функциональных возможностей, которые очень сложно реализовать в существующих средствах абонентского доступа. Можно назвать два характерных примера - канал ТВЧ и система охранной сигнализации, которую невозможно блокировать, находясь вне контролируемого помещения.

Технология LMDS может использоваться как для построения сети абонентского доступа, так и для создания более крупных фрагментов телекоммуникационной системы. На рисунке 2.64 показаны три основных варианта сопряжения системы LMDS с ТФОП, позволяющие ввести ряд комментариев к этому утверждению.

Первый вариант подразумевает включение сети LMDS на правах УПАТС. Это означает, что коммутационное оборудование LMDS включается в ТФОП как выносной модуль. Необходимо, чтобы это подключение осуществлялось через цифровую коммутационную станцию местной телефонной сети. Если сеть LMDS будет поддерживать услуги ЦСИО, необходимо также, чтобы цифровые коммутационные станции выполняли все требования системы интегрального обслуживания. Очевидно, что такое решение будет эффективным для небольших городов с относительно малым числом абонентов.

Второй вариант основан на том, что коммутационное оборудование LMDS выполняет функции РАТС. Такое включение означает, что номера абонентов сети LMDS входят в общий план нумерации данной местной телефонной сети. Подобное решение будет эффективным для большинства городов России.

Принципы сопряжения системы LMDS с ТФОП

Рисунок 2.64

Третий вариант ориентирован на включение сети LMDS непосредственно в АМТС. Это означает, что фактически создается «наложенная» местная сеть, обслуживающая большую территорию. Возможно, что такое решение может найти практическое применение в крупных городах России.

Выбор оптимального сценария для построения телекоммуникационной системы, основанной на технологии LMDS, должен быть выполнен отдельно для каждой конкретной местной сети. При этом могут использоваться различные, оговоренные лицензией, решения, касающиеся структуры сети LMDS, перечня вводимых услуг и принципов взаимодействия с ТФОП.

Скорее всего, наиболее вероятные сценарии состоят в том, чтобы выбрать последовательность введения услуг и этапность развития системы в целом. Эти сценарии можно объединить в рамках общего подхода, называемого далее “принцип развивающейся системы”. Слово “развитие” относится - в данном случае - к трем аспектам: рост числа абонентов, расширение границ зоны обслуживания, дополнение перечня поддерживаемых услуг. Подобный подход иллюстрирует рисунок 2.65.

Принцип развивающейся системы

Рисунок 2.65

Несомненно, что технология LMDS может считаться перспективным направлением в Операторской деятельности. Практическая реализация услуг LMDS связана с решением ряда серьезных технических, экономических и организационных проблем. Для их решения целесообразно провести комплекс соответствующих работ.

2.5.5. Поддержка функций мобильности сетью абонентского доступа

В этом параграфе, как и ранее, мы будем рассматривать “мобильность терминала” и “персональную мобильность”. Аспекты мобильности, в контексте монографии, изложены в параграфе 2.5.5 с точки зрения тех дополнительных функциональных возможностей, которые свойственны технологии WLL. Еще раз напомню, что принципов построения сотовых сетей мы касаться не будем. Основная причина, побудившая меня включить этот параграф в состав второй главы, заключается в следующем:

- затраты на модернизацию сети абонентского доступа, как правило, будут соизмеримы при использовании проводных и радиотехнических средств;

- основное потенциальное преимущество проводных средств (речь идет о технологиях FTTOpt) заключается в возможности существенного повышения полосы пропускания сети абонентского доступа;

- главным достоинством радиотехнических средств можно считать возможность поддержки функций мобильности;

- при выборе (Оператором, а в условиях конкуренции - и абонентами) средств абонентского доступа целесообразно определить уровень мобильности, который способно обеспечить то или иное решение, используемое в технологии WLL.

Итак в этом параграфе будут изложены функциональные возможности ряда сценариев, которые могут использоваться в технологии WLL. Эти соображения могут оказаться весьма полезными и при выборе средств для модернизации сети абонентского доступа (проводные или радиотехнические), и в процессе поиска оптимального решения, на основе которого будет воплощена технология WLL.

Мы будем рассматривать сценарии использования технологии WLL в самом общем виде. В частности, объединены методы доступа с временным (TDMA) и кодовым (CDMA) разделением каналов. Их характеристики определены различными стандартами, но с точки зрения структуры сети абонентского доступа оба метода (TDMA и CDMA) практически идентичны. Аналогично, на рисунке 2.66 объединены разные стандарты сотовых сетей - GSM, NMT, AMPS, DCS-1800. Это сделано по одной причине: применительно к структуре сети абонентского доступа важно лишь то, что использование оборудования любого типа (GSM, NMT, AMPS или DCS-1800) подразумевает сотовую структуру, присущую современной системе мобильной связи.

Рисунок 2.66 представляет четыре сценария, на основе которых могут создаваться сети абонентского доступа, обеспечивающие - в дополнение к заранее заданным требованиям стационарной телекоммуникационной системы - некоторые функции мобильности. Эти сценарии не охватывают все решения (так же, как и все возможные стандарты), на которых может остановить свой выбор Оператор. Четыре сценария, показанных на рисунке 2.66, позволяют нам рассмотреть наиболее характерные направления, по которым может развиваться сеть абонентского доступа. Для каждого возможного решения приведены чисто субъективные оценки уровня мобильности в сети абонентского доступа и степени сложности используемого оборудования, косвенно определяющего затраты Оператора. Чем темнее соответствующая стрелка, тем выше уровень мобильности или степень сложности.

Примеры сценариев, использующих технологию WLL

Рисунок 2.66

Начнем краткий анализ рисунка 2.66 с систем многостанционного (или множественного) доступа с временным и кодовым разделением каналов. В принципе, можно включить в этот перечень и систему с частотным разделением каналов - FDMA (Frequency Division Multiple Access), но она уже не считается перспективной. Системы TDMA и CDMA непрерывно совершенствуются.

В технической литературе последних лет активно обсуждают преимущества и недостатки этих методов разделения каналов. Мы не будем участвовать в этой полемике, так как с точки зрения сети абонентского доступа оба метода приводят к реализации одной и той же структуры. Мне показалось целесообразным привести некоторые характеристики какой-либо современной системы многостанционного доступа. Выбор пал на стандарт ETSI [72], который специфицирует систему TDMA в диапазоне частот от 1 до 3 ГГц.

Рассматриваемая система TDMA предназначена для использования как в ТФОП, так в других сетях электросвязи. Ее абоненты могут обмениваться речевой информацией и данными на скоростях, не превышающих 64 кбит/с. Кроме того, в [72] акцентируется внимание на возможности организации интерфейса ЦСИО со структурой доступа 2B+D. Предыдущими поколениями систем TDMA услуги ЦСИО не поддерживались.

Ресурсы пропускной способности, которыми располагает система, определяются формулой nx2048 кбит/с; величина “n” может принимать значения 1, 2 или 4, что подразумевает организацию 30, 60 или 120 ОЦК соответственно. Для создания таких пучков СЛ могут использоваться пять частотных планов в диапазоне от 1,5 ГГц до 2,6 ГГц. Основные характеристики системы TDMA, специфицированной в [72], заимствованы из рекомендаций МСЭ и стандартов ETSI.

Структура сети абонентского доступа, основанная на оборудовании TDMA или CDMA, приведена на рисунке 2.67 как вариант (а). Это решение предусматривает установку одной БС. Зона обслуживания БС, как правило, не будет совпадать с границами пристанционного участка той МС, которая будет обслуживать мобильные терминалы. На рисунке 2.67 показана ситуация, когда зона действия БС, помимо МС1, охватывает небольшой фрагмент пристанционного участка другой коммутационной станции. Таким образом, БС обслуживает некоторую территорию, представляющую собой один сот, в пределах которого микросоты не создаются.

Две модели сети абонентского доступа

Рисунок 2.67

Оборудование, используемое при реализации такого сценария, будет более простым, чем аппаратно-программные средства, ориентированные на классическую сотовую технологию [73]. Но мобильность терминала ограничена зоной обслуживания БС. Следует подчеркнуть, что иногда мобильность терминала будет ограничена еще меньшей территорией. В качестве примера можно привести ситуацию, характерную для сельской связи: двухпроводные АЛ подключаются к концентратору, который через системы TDMA или CDMA соединяется с МС. Учитывая все эти соображения, на рисунке 2.66 рассматриваемому варианту приписаны минимальные уровни мобильности и сложности.

Вариант (б) на рисунке 2.67 иллюстрирует принципы создания сотовой структуры в пределах пристанционного участка МС. Такое решение характерно для стандарта DECT, разработанного ETSI [74]. В нашем примере показаны пять БС, создающие микросоты [75]. Для того, чтобы подчеркнуть этот факт, каждая БС отмечена буквой “m” - сокращение от слов “Micro cell”. Для территории, обслуживаемой БС5, приведен пример организации четырех пикосот [75]. Соответствующие БС обозначены буквой “p” как сокращения слов “Pico cell”. Из этих рассуждений становится очевидным, что стандарт DECT основан на сотовых структурах.

Размеры макро-, микро- и пикосот определяются несколькими факторами: мощностью соответствующих БС, поверхностной плотностью размещения потенциальных абонентов и рядом других показателей. В технической литературе приводятся разные оценки для среднего радиуса сота каждого вида. Авторы уже упомянутой статьи [75] считают, что макросоты в настоящее время имеют радиус более 0,6 километра, микросоты рассчитаны на площадки радиусом от 60 до 600 метров, а для пикосот радиус обслуживания лежит в диапазоне от 6 до 60 метров. В других работах размеры пикосот определяются радиусом от 10 до 100 метров, а для микросот - от 0,1 до 1 километра; макросоты покрывают территорию радиусом от 1 до 35 километров.

Конечно, такая сеть абонентского доступа поддерживает весьма высокий уровень мобильности терминала, но она сложнее, чем структура, рассмотренная ранее (системы TDMA или CDMA). Это отражено на рисунке 2.66 при окраске стрелок, характеризующих уровни мобильности и сложности, присущие системе DECT и подобным стандартам.

Спецификации DECT [74] содержат подробную информацию, касающуюся различных аспектов этой системы беспроводного доступа. В контексте раздела 2.5 мне представляется целесообразным привести ряд сведений, прямо или косвенно определяющих сетевые аспекты применения стандарта DECT. Приведенная ниже информация заимствована из уже упомянутого стандарта ETSI [74] и отчета [76], определившего общие принципы реализации DECT.

Разработку стандарта DECT стимулировала ситуация, сложившаяся на телекоммуникационном рынке развитых европейских стран. В [76] перечислены пять основных систем, используемых в качестве технологий WLL. Все эти системы основаны на разных принципах, а их частотные планы не были согласованы. Назрела необходимость унификации радиотехнических средств, используемых в национальных сетях стран Европы, что было выгодно всем участникам телекоммуникационного рынка.

Преимущества DECT заключаются, по мнению разработчиков этого стандарта, в следующем:

- эффективное решение многих проблем Оператора за счет использования унифицированных технических средств;

- возможность организации беспроводной связи на территории с очень высокой поверхностной плотностью размещения абонентов, на два порядка (и даже более) превышающую величины, свойственные сотовым сетям;

- гибкая адаптация системы к различным требованиям, возникающим у абонентов;

- возможность введения новых услуг и/или организации альтернативной сети абонентского доступа.

Для стандарта DECT выделен спектр частот в диапазоне 1880 МГц - 1900 МГц; число несущих равно 10. Максимальная мощность передачи составляет 250 мВт. Передача речи осуществляется со скоростью 32 кбит/с в соответствии с принципами, изложенными в рекомендации МСЭ G.726. Для пользователей ЦСИО выделяются ресурсы, необходимые для интерфейса со структурой доступа 2B+D.

Идеология DECT может использоваться во многих видах оборудования электросвязи. Она может эффективно применяться и в простых бесшнуровых (cordless) терминалах, и в более сложных системах распределения информации, примером которых могут служить беспроводные УПАТС (Wireless PABX).

Вернемся к рисунку 2.66, чтобы кратко рассмотреть два следующих сценария. Использование какого-либо стандарта сотовой сети можно считать очевидным решением. Уровень мобильности для третьего сценария можно считать весьма высоким. Для включения стационарных терминалов такое решение из-за высоких затрат, как правило, не будет оптимальным. На рисунке 2.66 это обстоятельство отмечено более темным, чем для предшествующих сценариев, заполнением соответствующей стрелки.

Четвертый сценарий, поддерживающий технологию WLL, связан с уже упоминавшимися в первой главе монографии концепциями IMT-2000 [77] и UMTS [78], предложенными МСЭ и ETSI соответственно. Различия между этими двумя концепциями не считаются существенными, а для рассматриваемых в этом параграфе вопросов они совершенно не принципиальны. Это обстоятельство позволяет мне очень кратко изложить главные особенности четвертого сценария на примере концепции UMTS.

Данная концепция посвящена основным принципам построения третьего поколения сотовых сетей связи с подвижными объектами. Можно говорить о том, что концепция UMTS предусматривает ряд очень существенных новшеств, из которых - в контексте вопросов, изложенных в монографии, - целесообразно выделить три аспекта. Во-первых, сама идея мобильной связи претерпевает радикальные изменения (заметим, что в UMTS используются не только сотовые технологии). Во-вторых, появляется возможность поддержки “персональной мобильности” в полном смысле этого словосочетания. В-третьих, создаются условия максимальной интеграции стационарных и мобильных сетей связи (к этому вопросу мы вернемся в следующем параграфе).

В UMTS должна поддерживаться глобальная мобильность терминала (Global terminal mobility), что подразумевает использование не только наземных, но спутниковых систем связи. Качество передачи речевой и иной информации должно соответствовать тому уровню, который пока характерен только для стационарных сетей электросвязи. Для построения UMTS выделены частоты в диапазонах 1885 - 2025 МГц и 2110 - 2200 МГц. В этих же диапазонах выделяются частоты для системы спутниковой связи, используемой в UMTS.

UMTS, на начальном этапе своего создания, будет поддерживать широкий спектр телекоммуникационных услуг, ориентированных на скорость обмена информацией вплоть до 2,048 Мбит/с. В перспективе станут доступными и более высокие скорости. Существенные изменения ожидаются в отношении функциональных возможностей терминалов. Будут уменьшаться габариты терминалов и их масса. Весьма важно, чтобы мобильные терминалы потребляли минимум энергии.

Принципы “Персональной мобильности” в UMTS определяются, в основном, концепцией УПС [4, 58]. Безусловно, что UMTS (равно как и IMT-2000) обеспечивает самый высокий уровень мобильности по сравнению со всеми другими системными решениями, рассмотренными ранее. Также очевидно, что практическая реализация UMTS или IMT-2000 на порядок сложнее, чем построение предшествующих поколений телекоммуникационного оборудования. Поэтому обе стрелки на рисунке 2.66, относящиеся к четвертому сценарию, имеют самую интенсивную окраску.

2.5.6. Интеграция стационарных и мобильных сетей связи

Процесс, рассматриваемый в этом параграфе, в последнее время все чаще называют конвергенцией сетей. Можно выделить ряд очень важных аспектов в интеграции стационарных и мобильных сетей связи. Но мы ограничимся лишь теми, которые существенны с точки зрения построения сетей абонентского доступа. Такая постановка проблемы позволяет акцентировать основное внимание на двух задачах.

Разработку наиболее вероятных сценариев, по которым будут протекать интеграционные процессы, можно уверенно назвать первой задачей. Для начала необходимо уяснить конечную цель, к которой ведет интеграция стационарных и мобильных сетей связи. Несомненно то, что радиотехнические средства будут способны, в обозримой перспективе, поддерживать высокие скорости передачи информации - на уровне сотен Мбит/с [79] и даже нескольких Гбит/с [80]. Также очевидно, что только радиотехнические средства обеспечат функции, касающиеся мобильности терминала и, совместно со стационарным оборудованием, персональной мобильности. Но беспроводные технологии никогда не вытеснят полностью стационарное оборудование, хотя заметно сократят сферу его использования, особенно в сетях абонентского доступа.

Мне представляется, что наиболее вероятный сценарий интеграции стационарных и мобильных средств в границах сети абонентского доступа будет заключаться в следующем. Во-первых, установится разумный оптимум между проводными и радиотехническими средствами, используемыми в этой сети (безусловно, оптимум не будет одинаковым для разных сетей абонентского доступа). Во-вторых, аппаратные и - что более существенно - программные средства, используемые в стационарных и мобильных сетях, будут максимально унифицированы. Иными словами интеграционный процесс будет осуществлен на интеллектуальной платформе. И, в-третьих, техническая эксплуатация оборудования, используемого в сетях абонентского доступа, вне зависимости от среды распространения сигналов, будет осуществляться единой системой.

В качестве второй задачи я бы назвал разработку методики планирования сети абонентского доступа. Такое утверждение может показаться наивным из-за того, что еще не до конца понятны требования абонентов, которые будут предъявлены к перспективным стационарным и мобильным сетям. Тем не менее, в подобных ситуациях есть определенные преимущества. В частности, разработку двух методик планирования, ориентированных на стационарные и мобильные сети, можно проводить так, чтобы учесть основные, уже очевидные, решения, обусловленные процессом конвергенции в телекоммуникационной системе XXI века.

Дополнительные комментарии

Процессы модернизации существующих сетей абонентского доступа в самое ближайшее время изменят этот элемент телекоммуникационной системы до неузнаваемости. Такова логика развития электросвязи на пороге XXI века. Одна из примечательных особенностей перспективных сетей абонентского доступа заключается в появлении новых технических средств, позволяющих эффективно поддерживать современные телекоммуникационные услуги.

Операторам электросвязи следует обратить самое серьезное внимание на сети абонентского доступа. Использованные ранее принципы их создания и развития могут стать серьезнейшим тормозом дальнейшей модернизации всей телекоммуникационной системы. Ориентация на новые услуги электросвязи, как правило, требует существенных вложений в развитие сетей абонентского доступа. Паллиативные решения не могут стать долговременными. Этот тезис определил выбор эпиграфа к разделу 2.6.

Бурное развитие новых видов связи на какое-то время затмило проблемы телефонии. Это видно из содержания публикаций в журналах, имеющих прямое или косвенное отношение к электросвязи. Я придерживаюсь той точки зрения, что ТФОП в обозримой перспективе будет доминирующей телекоммуникационной сетью. Это положение объясняется и той ролью, которую играет речь в общем информационном обмене, и тем, что именно ТФОП стала базой для создания ЦСИО и ряда других сетей.

По этой причине вторая глава монографии начинается анализом тех проблем построения сетей абонентского доступа, которые возникают при модернизации ТФОП. Изложению этих вопросов посвящена почти треть второй главы. Я надеюсь, что в разделе 2.1 затронуты все основные (касающиеся, разумеется, сетей абонентского доступа) вопросы, которые могут возникнуть у Оператора при решении задач цифровизации ГТС и СТС. В предыдущем предложении использован глагол «затронуты», потому что “решением” представленные в разделе 2.1 соображения можно назвать только с очень большой натяжкой.

В разделе 2.2 рассмотрены основные варианты организации сети доступа для обычной (узкополосной) ЦСИО. Безусловно, ЦСИО будет формироваться на базе различных сценариев, что обусловлено многими объективными и субъективными факторами. Мне кажется, что доминировать все-таки будет сценарий, подразумевающий создание “наложенной” ЦСИО. Конечно, в процессе цифровизации ТФОП будет осуществляться и трансформация “наложенной” ЦСИО. В результате, структуры ТФОП и ЦСИО совпадут, то есть «наложенная» сеть интегрального обслуживания будет существовать только до завершения процесса замены аналоговых АТС местной сети на современные цифровые коммутационные станции.

К современным телекоммуникационным сетям все чаще предъявляются требования, касающиеся обмена видеоинформацией. Это объясняется тем, что львиную долю знаний об окружающем мире человек получает благодаря органам зрения. Роль катализатора в интенсивном развитии систем обмена видеоинформацией сыграли персональные компьютеры и Internet.

Видеоинформация, как правило, требует существенного расширения пропускной способности сетей абонентского доступа. С другой стороны, некоторые виды систем передачи видеоинформации ориентированы на построение специализированных сетей доступа. Характерный пример - сети КТВ. В разделе 2.3 рассмотрены подобные сети доступа, имеющие, как правило, специализированное применение.

Характерная особенность некоторых широкополосных сетей состоит в том, что они обладают потенциальной возможностью передачи большого объема информации, включая, в частности, и речевой трафик. Но для решения подобных задач в этих сетях необходимо установить устройства распределения информации, подобные - по уровню «интеллекта» - современным цифровым коммутационным станциям. Когда такой шаг уже сделан, Оператор широкополосной сети становится серьезным конкурентом на рынке услуг телефонной связи. Такие сценарии нашли практическое воплощение на рынке телекоммуникационных услуг в ряде стран. Правда, и Операторы ТФОП, чьи коммутационные станции обладают мощным «интеллектом», также успешно вторгаются на рынок услуг видеоинформации.

Раздел 2.4 также посвящен широкополосным сетям абонентского доступа. Отличие от предыдущего раздела состоит в том, что рассматриваемые вопросы лежат в русле концепции широкополосной ЦСИО. Изложению достаточно сложного материала предшествует объяснение ряда важных принципов в системе понятий «игроки и роли», введенной экономистами Гарвардской школы. Этот подход мне показался очень плодотворными и был апробирован в курсе лекций, посвященных основам построения сетей связи. Кубик, который впервые появился на рисунке 2.34, позволяет эффектно иллюстрировать многие сложные процессы, свойственные современной телекоммуникационной системе.

В разделе 2.4 изложены некоторые вопросы, не имеющие, на первый взгляд, прямого отношения к сетям абонентского доступа. В качестве наиболее характерного примера можно назвать параграф 2.4.2, посвященный технологии ATM. Безусловно, технология АТМ заслуживает отдельного анализа. Этому вопросу посвящен ряд монографий и статей. В разделе 2.4 приведены только некоторые особенности АТМ, существенные с точки зрения сетей абонентского доступа. Это замечание относится и к другим параграфам раздела 2.4, имеющим косвенное отношение к основной теме монографии.

Широкополосная ЦСИО может (и будет) создаваться различными способами. Мне представляется, что наиболее вероятное направление - это сценарий, названный расширяющимся ядром. Конечно, этот вариант не исключает возможность использования Оператором других сценариев построения широкополосной ЦСИО.

Очень интересно проследить экспансию двух конкурирующих и одновременно дополняющих друг друга сред распространения сигналов - оптического волокна и эфира. Можно считать, что сфера применения ОК расширяется, постепенно двигаясь с уровня международной и междугородной сетей в направлении МС. Этот процесс, если оперировать длинами кабельных трасс, можно “измерить” тысячами, сотнями или десятками километров. Если говорить о времени замены старых кабелей с металлическими жилами, то результаты “измерений” будут исчисляться годами, реже - десятилетиями. Территория сети абонентского доступа не велика. Если представить ее форму в виде круга, в центре которого расположена МС, то радиус окружности будет ограничен несколькими километрами. Тем не менее, ОК - в пределах сети абонентского доступа - будет “отвоевывать” жизненное пространство в течение нескольких десятилетий.

Экспансия радиотехнических средств осуществляется по совершенно противоположному сценарию. Она ”стартовала” в помещении пользователя, когда он заменил обычный ТА на бесшнуровой (Cordless) терминал. Желание абонентов пользоваться услугами связи, перемещаясь в широких географических пределах, стимулирует поэтапное создание соответствующих сетей на местном, междугородном и, наконец, международном уровнях.

В разделе 2.5 основное внимание уделяется технологии WLL. Оборудование WLL используется в стационарных сетях связи как альтернатива линейно-кабельным сооружениям, привычным для ТФОП. Несомненно, что в ряде случаев, особенно применительно к сельской связи, технология WLL будет очень эффективным средством создания всей сети абонентского доступа или ее фрагментов. Как очень перспективный я бы отметил вариант использования технологии WLL для образования колец в сети абонентского доступа. Рисунок 2.61 приведен как пример такого решения.

Технологию LMDS, рассмотренную в параграфе 2.5.4, можно считать альтернативным решением для создания сети абонентского доступа, которая не использует линейно-кабельные сооружения Оператора ТФОП. Примечательная особенность технологии LMDS заключается в том, что сеть абонентского доступа, построенная на ее основе, поддерживает широкий спектр услуг. В частности, технология LMDS, в дополнение к телефонной связи и обмену данными, может экономично предоставлять услуги типа «Видео по заказу».

Выше внимание читателей было обращено на столь важный аспект сети абонентского доступа как возможность обмена видеоинформацией. Не менее существенным требованием, предъявляемым к перспективным сетям абонентского доступа, можно считать «мобильность терминала» и, особенно, «персональную» мобильность. Такие функциональные возможности просто немыслимы без широкого использования радиотехнического оборудования. Эти вопросы рассмотрены в параграфе 2.5.5. А заканчивается раздел 2.5 небольшим параграфом «Интеграция стационарных и мобильных сетей связи», в котором кратко изложены некоторые аспекты конвергенции, свойственные современной телекоммуникационной системе.

Список литературы

1. Квазиэлектронные и электронные АТС / М.Ф. Лутов, М.А. Жарков, П.А. Юнаков - 2-е изд., перераб. и доп. - М.: Радио и связь, 1988, 264 с.

2. Engineering and Operations in the Bell System / Prepared by Member of the Technical Staff and the Technical Publication Department AT&T Bell Laboratories; R.F. Rey, Technical Editor. - AT&T Bell Laboratories, Murray Hill, N.J., 1983, 884 p.

3. O. Hilz, H. Klein. Application Strategy for Digital Switching in the Telephone Network of the Deutsche Bundespost (DBP) - the Presentation Procedure/The Deutsche Bundespost on its Way towards the ISDN, 1984, pp. 45 - 123.

4. Соколов Н.А. Эволюция местных телефонных сетей. - Издательство ТОО Типография “Книга”, Пермь, 1994, 375 с.

5. R.Janowiak, J. Sheth, M. Saghafi. Communications in the Next Millennium. - Telecommunications International, March 1997, pp. 47, 48, 50, 53, 54.

6. Competition With and From PTOs. Report of the DATAPRO International “Cable Telephony: Overview”, July 1994, pp. 9 - 10.

7. Y. Inoue, M. Kawarasaki. Networking toward B-ISDN. - NTT Review, 1991, Vol. 3, No 3, pp. 34 - 43.

8. Y. Inoue. Networking Evolution toward B-ISDN - Granulated Broadband Network Feature. - Technical Symposium "Technical Challenge: Interfacing Regional Needs": Special Session of the World Telecommunication Forum, Part 2, Singapore, 17 - 19 May, 1993, pp. 97 - 101.

9. ITU-T. Introduction of New Technologies in Local Networks. - Geneva, 1993, 189 p.

10. S.D. Personick. The Evolving Role of Telecommunications Switching. - IEEE Communications Magazine, January 1993, pp. 20 - 24.

11. R.J. Chapuis. Present status and trends in digital switching. - Telecommunication Journal, Vol. 60 - IV, 1993, pp. 161 - 167.

12. K. Hoffmann. Digital Switching in the Telephone Network of the Deutsche Bundespost (DBP) - the Presentation Procedure/The Deutsche Bundespost on its Way towards the ISDN, 1984, pp. 5 - 44.

13. Жданов И.М., Кучерявый Е.И. Построение городских телефонных сетей. - М.: Связь, 1972, 136 с.

14. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1984, 831 с.

15. Основы экономики телекоммуникаций (связи): Учебник для вузов под ред. М.А. Горелик и Е.А. Голубицкой. - М.: Радио и связь, 1997, 224 с.

16. Экономика: Учебник / Под ред. доц. А.С. Булатова. - М.: Издательство БЕК, 1994, 632 с.

17. Владимиров В.В., Фомин И.А. Основы районной планировки. - М.: Высшая школа, 1995, 224 с.

18. Исследование операций: в 2-х томах. Пер. С англ. / Под ред. Дж. Моудера, С. Элмаграби. - М.: Мир, 1981, Том 1, 712 с.

19. V. Werbus, A. Veloso, A. Villanueva. DECT - Cordless Functionality in New Generation Alcatel PABXs. - Electrical Communication, 2nd Quarter 1993, pp. 172 - 180.

20. Руководящий документ по общегосударственной системе автоматизированной телефонной связи (ОГСТфС). Книга I. - М.: Прейскурантиздат, 1988, 448 с.

21. D. Clark. ISDN PABX Applications. - Telecommunications, May 1993, Vol. 27, pp. 25 - 26.

22. M.P. Clark. ATM Networks. Principles and Use. - Wiley and Teubner, 1996, 232 p.

23. V.A. Sokolov, N.A. Sokolov. Application of the digital transmission and switching systems at the metropolitan area networks. Proceedings of the International Conference TELEKOMUNIKACE- 88, Czechoslovakia, 1988, pp. 91- 100.

24. J. Weber. EWSD innovations - the driving force. - Telecom report, N 1, 1997, pp. 12 - 15.

25. ITU-T. ISDN user-network interfaces - Reference configurations. Recommendation I.411. - Geneva, 1993, 7 p.

26. N. Burd. The ISDN Subscriber Loop. - Chapman & Hall, London, 1997 (First Edition), 475 p.

27. ITU-T. Operational provisions for the international public facsimile service between subscriber stations with group 4 facsimile machines (telefax 4). Recommendation F.184. - Geneva, 1993, 9 p.

28. Брискер А.С., Руга А.Д., Шарле Д.Л. Городские телефонные кабели. - М.: Радио и связь, 1991, 208 с.

29. Ньюман Д. Основы построения структурированной кабельной системы. Часть I. - Сети и системы связи, №7, 1996, с. 22 - 29.

30. Ньюман Д. Основы построения структурированной кабельной системы. Часть II. - Сети и системы связи, №10, 1996, с. 22 - 28.

31. Ньюман Д. Основы построения структурированной кабельной системы. Часть III. - Сети и системы связи, №2, 1997, с. 28 - 35.

32. R. Walters. Computer-Mediated Communications: Multimedia Applications. - Artech House, Inc., Boston-London, 1995, 420 p.

33. Гроднев И.И., Верник С.М., Кочановский Л.Н. Линии связи. - М.: Радио и связь, 1995, 488 с.

34. ITU-T. Digital transmission system on metallic local lines for ISDN basic rate access. Recommendation G.961. - Geneva, 1994, 134 p.

35. Даленбах Д., Мирошников Д. HDSL Watson - высокоскоростная цифровая передача для абонентских линий и межстанционных связей. - ТелеВестник, N2, 1996, с. 60 - 62.

36. Боккер П. Цифровая сеть с интеграцией служб. Понятия, методы, системы: Пер. с нем. - М.: Радио и связь, 1991, 304 с.

37. P.D. Moore. ISDN for the masses. - Telephony, February 19, 1996, pp. 34 - 36.

38. A. Lindstorm. Pulling bandwidth out of a copper hat. - America’s Network, July 15, 1997, pp. 59 - 61.

39. C.E. "Bud" Kocher. Pinpointing the work-at-home market. - Telephony, February 8, 1993, pp. 26, 30, 32, 36.

40. Э. Шредер. Bell Atlantic и GTE снижают цены на ISDN-услуги.- PC Week, 29 апреля 1996, с. 37.

41. Витиевский В.Б., Коновалов А.П., Кубанов В.П., Лиманский Н.С., Некрасов Л.Ф. Кабельное телевидение. - М.: Радио и связь, 1994, 197 с.

42. R. Hiedemann. The IVOD Berlin Project: Access Technology for Service Provisioning. - Alcatel Telecommunications Review - 3rd Quater 1996, pp. 196 - 200.

43. N. Thouvenot. Urban Video Surveillance System. - Electrical Communication - 2nd Quater 1994, pp. 144 - 147.

44. ITU-TS. Introduction of New Technologies in Local Networks. - Geneva, 1993, 189 p.

45. ITU-T, Study Group 13. Information Industry Enterprise Model, Reference Model And Items To Be Standardized And How. - Working Document 02-E (GII). - Geneva, 1996, 114 p.

46. ITU-T. B-ISDN asynchronous transfer mode functional characteristics. Recommendation I.150. - Geneva, 1993, 8 p.

47. ITU-T. Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for terminals operating in the packet mode and connected to public data networks by dedicated circuit. Recommendation X.25. - Geneva, 1993, 156 p.

48. W.H. Chen. Compressd digital video: A new world of broadcast potential. - International Cable, February 1996, pp. 42 - 48.

49. The ATM Forum Technical Committee: af-phy-0040.000 «Physical Interface Specification for 25,6 Mb/s over Twisted Pair Cable». - November, 1995, 37 p.

50. ITU-T. B-ISDN user-network interface. Recommendation I.413 - Geneva, 1993, 9 p.

51. K. Asatani et al. Introduction to ATM Networks and B-ISDN. - John Willey & Sons, 1997, 259 p.

52. ITU-T. Vocabulary of digital transmission and multiplexing, and pulse code modulation (PCM) terms. - Recommendation G.701 - Geneva, 1994, 37 p.

53. ITU-T. Vocabulary of terms for broadband aspects of ISDN. Recommendation I.113 - Geneva, 1994, 24 p.

54. ITU-T. Digital exchange performance design objectives. Recommendation Q.543 - Geneva, 1994, 36 p.

55. ITU-T. Service quality assessment for connection set-up and release delays. Recommendation E.431 - Geneva, 1992, 3 p.

56. ITU-T. B-ISDN ATM layer cell transfer performance. Recommendation I.356 - Geneva, 1995, 19 p.

57. Д. Коновер. Теряет ли АТМ свою привлекательность. - Сети и системы связи, №1, 1998, с. 56 - 61.

58. Варакин Л.Е., Соколов Н.А. Универсальная Персональная Связь. - Электросвязь, 1993, № 7, с. 4 - 6.

59. Соколов Н.А. План нумерации для ГТС большой емкости. - Вестник связи, 1998, № 5, с. 43 - 46.

60. Постников А.К., Макаров И.В. DECT и CT-2 на сети связи общего пользования. - Вестник связи, 1997, №6, с. 46 - 50.

61. Экономический анализ: Стационарные радиотелефонные сети. - QUALCOMM, 1998, 77 с.

62. J. Segava, K. Endo. The PHS Wireless Local Loop (WLL). - NTT Review, 1996, Vol. 8, No 5, pp. 92 - 95.

63. P.A. Caballero. Network planning in low density areas. - Electrical Communication - 1st Quarter 1995, pp. 53 - 58.

64. W. Kiesewetter, J. Panait. Point-to-muitipoint as an economical alternative to other types of telecommunication services. - Telecommunication Journal, Vol. 60 - XII, 1993, pp. 461 - 470.

65. C. F. Mason. A Niche Market in the U.S. - Telephony, June 20, 1994, pp. 24 - 29.

66. G. Litinsky. Wireless Local Loop solutions for Local Access Network. - Fourth International Conference and Exhibition “Telecommunication in the Russian Federation”, Vienna, 1997, 32 p.

67. J. Meyers. Conspiracy theory. - Telephony, November 10, 1997, pp. 22, 24, 26, 28, 30.

68. Э. Вайс. В каком типе WLL нуждаются Операторы? - Вестник связи, 1998, №2, с. 97 - 99.

69. S. Dravida, H. Jiang, M. Kodialam, B. Damadi. Y. Wang. Narrowband and Broadband Infrastructure Design for Wireless Networks. - IEEE Communications Magazine, May 1998, pp. 72 - 78.

70. T.J. Aprille, L.M. Schwerin, J.D. Sipes, N.S. Stevens. Interactive Broadband Service and PCS Network Architecture. - Bell Labs Technical Journal, Vol.1, No. 1, Summer 1996, pp. 11 - 27.

71. S.Y. Seidel, H.W. Arnold. 28 GHz Local Multipoint Distribution Services (LMDS): Strengths and Challenges. - Wireless Personal Communications “The Evolution of Personal Communications Systems”, edited by T.S. Rappoport, B.D. Woerner, J.H. Reed. - Kluwer Academic Publishers, 1996, pp. 7 - 17.

72. ETS 300 636. Transmission and Multiplexing (TM); Time Division Multiple Access (TDMA) point to multipoint digital radio systems in the frequency range 1 to 3 GHz - ETSI, 1996, 17 p.

73. A. Hadden. Personal Communications Networks: Practical Implementation. - Artech House, Boston-London, 1995, 294 p.

74. ETS 300 175-1. Radio Equipment and Systems (RES); Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 1: Overview - ETSI, 1996, 26 p.

75. G.I. Zysman, R. Thorkildsen, D.Y. Lee. Two-Way Wireless Broadband Access. - Bell Labs Technical Journal, Vol.1, No. 1, Summer 1996, pp. 115 - 129.

76. ETR 015. Radio Equipment and Systems; Digital Enhanced Cordless Telecommunications (DECT);Reference document - ETSI, 1991, 47 p.

77. M. H. Callendar. IMT-2000: the next challenge. - ITU News, N1, 1997, pp. 13 - 16.

78. ETR 271. Special Mobile Group; Universal Mobile Telecommunications System (UMTS); Objectives and overview (UMTS 01.01) - ETSI, 1996, 16 p.

79. C-K. Toh. Wireless ATM and Ad-Hoc Networks. - Kluwer Academic Publisher, 1997, 313 p.

80. P.F. Driessen. Gigabit/s Indoor Wireless Systems with Directional Antennas. - IEEE Transactions on Telecommunications, Vol. 44, N 8, 1996, pp. 1034 - 1043.