На передачу сигналов по РРЛ, как и во всех радиосистемах, влияют помехи внешнего и внутреннего происхождения. К внешним помехам относят космические и атмосферные шумы, индустриальные помехи и сигналы от других радиосистем [1]. Уровень этих помех обычно удается свести к минимуму с помощью тех или иных организационных мер (соответствующий выбор частот, фильтрация мешающих радиосигналов, правильное размещение станций и тому подобное). Если РРЛ работает в диапазоне дециметровых или сантиметровых волн, то влиянием индустриальных помех можно пренебречь.

Особое внимание при организации РРЛ приходится уделять внутрисистемным помехам. К ним относятся флуктуационные (тепловые и дробовые) шумы, аппаратурные шумы (пульсации питающих напряжений, шумы коммутации и другие) и специфические помехи, обусловленные искажениями широкополосных сигналов при прохождении через тракты с неидеальными характеристиками. При многоканальной передаче такие помехи проявляются как переходные. Для уменьшения влияния флуктуационных шумов (обычно их сводят к тепловым шумам) приходится увеличивать "энергетический потенциал" системы, то есть увеличивать мощность передатчиков (при некоторой заданной средней протяженности пролетов), уменьшать шумовую температуру приемников (например, применением параметрических усилителей на входе приемников), увеличивать коэффициент усиления антенн и тому подобное. Борьба с аппаратурными шумами ведется путем совершенствования аппаратуры и порядка ее эксплуатации.

Тепловые шумы в телефонных каналах. При передаче по телефонным каналам сигналов в аналоговой форме тепловые шумы накапливаются (суммируются по мощности) по мере прохождения сигнала через различные элементы тракта от одной станции до другой. Качество телефонного канала принято характеризовать мощностью помех в точке нулевого относительного уровня сигнала на выходе ТФ канала. Эта мощность определяется многими слагаемыми.

Шумовые свойства всех блоков линейной части приемника до АО учитываются коэффициентом шума приемника Ш. При этом полная эквивалентная мощность теплового шума, отнесенного ко входу приемника (при условии согласования его входного сопротивления с сопротивлением эквивалентного источника шума),

, (6.13)

где k – постоянная Больцмана; Т – абсолютная температура окружающей среды (обычно принимают Т=290 К); Пэ – эффективная полоса шумов приемника, которая обычно принимается равной ширине полосы ∆fп.ч тракта промежуточной частоты; Рт.вых – мощность шума на выходе линейной части приемника, имеющей коэффициент усиления по мощности, равный Км. Если принять, что мощность Рт.вх равномерно распределена в полосе Пэ, то спектральная плотность мощности, выделяемой на сопротивлении 1 Ом,

Gт.вх = kТШRвх, (6.14)

Уровень шума на входе ЧД зависит от уровня сигнала на входе приемника uс(t).

На рисунке 6.12,а представлена векторная диаграмм, из которой видно, что в результате сложения случайного вектора шума Uт.вх(t), отображающего uт.вх(t), с вектором сигнала Uc, отображающим uс(t), образуется случайный вектор U(t), отображающий суммарный сигнал

, (6.15)

Из векторной диаграммы следует, что в результате действия теплового шума полезный сигнал в приемнике приобретает паразитную амплитудную (АМ) и фазовую (ФМ) модуляцию. Как отмечалось выше, паразитная АМ обычно устраняется АО. Влияние же паразитной ФМ, обусловлено случайным изменением фазы φ(t) сигнала u(t), может быть уменьшено только увеличением энергетического потенциала системы, то есть увеличением uc(t). Из векторной диаграммы следует, что девиация фазы φ(t) непосредственно зависит от величины модулей Uc и Uт.вх(t).

Рисунок 6.12. Векторное (а) и спектральное (б,в) представления сигнала и теплового шума на входе (а,б) и выходе (в) приемника.
Рисунок 6.12. Векторное (а) и спектральное (б,в) представления сигнала и теплового шума на входе (а,б) и выходе (в) приемника.

Таким образом, случайные изменения фазы частотно-модулированного сигнала при частотном детектировании его трансформируются в случайные изменения амплитуды сигнала, то есть проявляются в виде шума [3].

Мощность теплового шума в канале ТЧ на i-м интервале РРЛ может быть определена по формуле:

, (6.16)

где

- коэффициент шума приемника; ∆Fк = 3.1 кГц – ширина полосы i-го канала ТЧ; Fк – значение центральной частоты канала ТЧ в групповом сигнале; ∆fк – эффективная девиация на канал; βпр – коэффициент учитывающий предыскажения сигнала; Кп – псофометрический коэффициент.

В телефонных каналах обычно нормируется псофометрическая (взвешенная) мощность шума в точке с нулевым относительным уровнем, в которой средняя мощность измерительного сигнала равна 109 пВт 0. Псофометрический коэффициент отражает реальное восприятие различных составляющих спектра шума и для канала ТЧ выбирается равным 0.56 (-2.5 дБ). При измерениях шумов в канале используются псофометрические фильтры для телефонных и вещательных и визометрические для телевизионных каналов. Характеристики этих фильтров приведены на рисунках 6.13 и 6.14 соответственно.

Рисунок 6.13. Амплитудно-частотная характеристика псофометрических фильтров для телефонных (1) и вещательных каналов (2)
Рисунок 6.13. Амплитудно-частотная характеристика псофометрических фильтров для телефонных (1) и вещательных каналов (2)

Рисунок 6.14. Частотная характеристика унифицированного визометрического фильтрова
Рисунок 6.14. Частотная характеристика унифицированного визометрического фильтрова

Мощность сигнала на входе приемника Рпр i зависит от параметров аппаратуры, условий распространений радиоволны [5]. Первоначально ориентируются на конкретную величину Рпр i = Рпр i (20%) – мощность сигнала на входе приемника, которая может уменьшаться в течении не более 20% времени любого месяца

, (6.17)

где Рпр.св – мощность без учета влияния условий распространения радиоволн; V20% – величина множителя ослабления поля свободного пространства, ниже которой он может быть в течение не более 20% времени любого месяца наблюдения. Обычно выбирают V20% ≈ 0.5. В реальном случае V изменяется от 0 до 2 в зависимости от параметров тропосферы и вида поверхности Земли. Множитель ослабления показывает, на сколько случай реального распространения радиоволн отличается от идеального (т.е. V=1).

С учетом вышеизложенного можно записать уравнение радиосвязи, отражающие основные факторы, влияющие на уровень сигнала при его распространении по радиотрассе:

, (6.18)

где Рп [Вт] – мощность передатчика; Gп, Gпр – коэффициенты передающей и приемной антенн соответственно; λ – длина волны; Ri – расстояние между станциями; ηп, ηпр – коэффициент полезного действия антенно-волноводного тракта передающей и приемной станции соответственно.

, (6.19)

где аАВТ [дБ] – суммарное ослабление сигнала в АВТ.

Практикум на применение уравнения радиосвязи:

Найти требуемую мощность передатчика РРЛ связи, если чувствительность приемника ПРС, расположенного на расстоянии R=20 км, равна Рмин=10-3 мкВт, Gпер=Gпр=37 дб; f=0.8 ГГц, V=0.7 дб, η=0.8.

При решении задач подобного типа необходимо четко представлять себе все факторы, влияющие на уровень сигнала при его распространении по радиотрассе (6.18). Под чувствительностью приемника подразумевается тот минимальный уровень сигнала на входе приемника, при котором качество приема полезного сигнала еще считается удовлетворительным. Рабочая длина волны связана с частотой радиосигнала через скорость света.

Те же рассуждения применяйте при решении таких задач как:

Найти мощность сигнала на выходе приемной антенны РРЛ связи, если Рпер=0.5 дБ/Вт, расстояние между станциями R=43 км, Gпер=3600; Gпр=41 дБ, fпер=2 ГГц, ηперпр=0.7, V=0.8

Определить мощность передатчика РРЛ связи, при которой на входе приемника будет иметь место пороговая мощность сигнала, равная 0.01 мкВт, если R=40 км, Gпер=2000, Gпр=20 дБ, ηпер=3.5 дБ, ηпр=2 дБ, V=0.7, fпер=1.5 ГГц.

Формула (6.18) через V20% учитывает долговременное состояние тропосферы, при этом среднеминутная псофометрическая мощность шума равная 7500 пВт может превышаться в течении не более t=20% времени любого месяца.

В тоже время на интервалах РРЛ могут иметь место глубокие замирания сигнала из-за изменения состояния тропосферы.

Для более глубоких замираний может допускаться большая мощность шума, но на более коротких интервалах времени.

Так, среднеминутная псофометрическая мощность шума 47500 пВт0 может превышаться в течение не более t = 0.1 % времени любого месяца, а средняя за 5 мс не взвешенная мощность шума 106 пВт0 может превышаться в течение не более t = 0.01 % времени любого месяца. Указанные нормы приведены для эталонной линии протяженностью 2500 км.

В общем случае множитель ослабления V(t) интегрально учитывает влияние на процесс распространения радиоволн Земли и тропосферы. V(t) – векторная величина, но во многих случаях достаточно знать ее модуль

|V(t)| = V(t) = E(t)/E0, (6.20)

где Е(t) и Е0 – модули напряженности электрического поля на входе приемной антенны при распространении радиоволн соответственно в реальных условиях (с учетом влияния тропосферы и Земли) и в свободном пространстве. В общем случае V(t) – случайная функция времени, и, например, V(20%) находится с использованием некоторых статических данных.

Из-за неоднородностей тропосферы радиоволны распространяются в ней по криволинейной траектории, что получило название тропосферной рефракции [5]. Электрические свойства тропосферы характеризуются степенью изменения диэлектрической проницаемости воздуха по высоте и определяются градиентом диэлектрической проницаемости .

В основе метода расчета трасс РРЛ лежит построение профилей пролетов [4].

Профилем пролета называется вертикальный разрез местности между двумя соседними радиорелейными станциями с учетом леса, строений и особенностей рельефа. Пример такого профиля показан на рисунке 6.15.. При этом в качестве определяющего параметра выбирается величина просвета (зазора) Н между линией "прямой видимости" АВ, соединяющей центры антенн, и ближайшей к ней (по вертикали) точкой препятствия С (на рисунке 6.15 изображен вариант профиля с одним препятствием; в специальных пособиях по расчету и проектированию РРЛ [11,14] рассматриваются также профили, когда в минимальную область пространства попадает несколько препятствий). Просвет Н считается положительным, если линия АВ проходит выше препятствия, и отрицательным, если эта линия пересекает профиль пролета.

Механизм распространения радиоволн на участке от передающей антенны (будем считать, что она установлена в точке А, рисунок 6.15) до приемной антенны (в точке В) существенно зависит от величины просвета Н, что, естественно, накладывает отпечаток и на методику расчета, в частности, множителя ослабления V. При этом можно выделить три основные группы пролетов (для некоторого фиксированного состояния тропосферы):

1. открытые, когда Н ≥ Н0;

2. полуоткрытые, когда Н0 > Н ≥ 0;

3. закрытые, когда Н < 0.

Через Н0 здесь обозначен критический просвет, при котором в точке приема векторная сумма напряженности поля прямого и отраженного сигналов равна напряженности поля в свободном пространстве (V = 1). В общем случае [11]

, (6.21)

где к1 = R1/R – относительная координата точки препятствия С.

Рисунок 6.15. Профиль пролета РРЛ прямой видимости

Рисунок 6.15. Профиль пролета РРЛ прямой видимости

Профиль пролета позволяет учесть влияние кривизны земной поверхности на процесс распространения радиоволн [6]. В частности, с помощью профиля можно получить представление об отражении радиоволн от поверхности Земли. Но в целом характер передачи сигналов на участке АВ будет весьма приближенным, если не учесть влияния тропосферы. При этом, прежде всего, приходится считаться с рефракцией радиоволн, то есть искривлением траектории волн (АВ на рисунке 6.15), обусловленным неоднородным строением тропосферы. Основную роль здесь играет неоднородность тропосферы в вертикальной плоскости. Рефракцию учитывают тем, что в величину просвета над определяющими точками (на рисунке 6.15 – точка С) вносится поправка

, (6.22)

Таким образом, зависящая от g величина просвета H(g) = H + ∆H(g).

При изменении метеорологических условий на пролете изменяются величины g и H(g), что может привести к резким колебаниям множителя ослабления, а следовательно, и уровня сигнала на входе приемника. На открытых пролетах (Н ≥ Н0) напряженность поля в точке приема определяется в основном интерференцией прямой и отраженных от земной поверхности волн. В случае одной отраженной волны (как на рисунке 6.5.4) множитель ослабления для реальных условий можно представить в виде [11]

, (6.23)

где |Ф| – модуль коэффициента отражения от земной поверхности, а

, (6.24)

относительный (нормированный) просвет. Из (6.5.11) следует, что при p(g)≥1 максимальные значения множителя ослабления чередуются с минимальными (рисунок 6.16).

Рисунок 6.16. Зависимость множителя ослабления V от относительного просвета p(g) и параметра μ.
Рисунок 6.16. Зависимость множителя ослабления V от относительного просвета p(g) и параметра μ.

На полуоткрытых и закрытых пролетах, где p(g) < 1, уровень поля в точке приема обусловлен главным образом процессом дифракции радиоволн, то есть огибанием ими земной поверхности. Множитель ослабления V в этом случае рассчитывается на основе приближенных методов, с применением аппроксимации реального препятствия частью сферической поверхности. Прежде чем найти V, необходимо применить параметр μ, характеризующий радиус кривизны сферы, аппроксимирующей препятствие, и зависящий от высоты ∆y и хорды сегмента аппроксимирующей сферы [11]. Чем ближе к 0 этот параметр, тем более плоской является трасса. На полуоткрытых пролетах и пролетах с малым закрытием хорда r определяется из профиля пролета (рисунок 6.16) как расстояние между точками пересечения препятствия линией, параллельной АВ и отстоящей от вершины на величину ∆y = Ho. Для пролетов, имеющих среднюю протяженность и одно препятствие, во многих случаях можно руководствоваться приближенным значением V, определяемым из графиков рисунок 6.16, полагая, что

, (6.25)

где α = ∆y/H0 = 1, ℓ = r/R, к1 =R1/R.

Как видно из рисунка 6.16, множитель ослабления V может изменяться в широких пределах. Для оценки устойчивости связи необходимо знать минимально допустимое значение множителя ослабления Vi min на каждом i-м пролете. Под Vi min понимается такое значение Vi, при котором суммарная мощность помех (Pп.вых) или отношение (Uт/Up)2 в канале на конце линии равны максимально допустимым значениям Pп.вых max или (Uт/Up)2max, определяемым соответствующими рекомендациями для малых процентов времени.

В конечном счете расчет сводится к определению процента времени, в течение которого на выходе канала суммарная мощность шумов может быть больше максимально допустимой (Ршт.max). На пролете это условие соответствует вероятности того, что множитель ослабления будет меньше минимального допустимого значения T(V<Vmin), поскольку при V=Vmin шумы на выходе канала равны максимально допустимым. Множитель ослабления на пролете может стать меньше Vmin только при глубоких замираниях, которые вызываются независимыми друг от друга причинами. Поэтому, вероятность того, что на пролете будут наблюдаться значения V<Vmin равна сумме замираний различного вида:

, (6.26)

где n – количество интервалов; Т0 (V<Vmin) – вероятность того, что V<Vmin за счет экранирующего действия препятствия; ∑Тп(V<Vmin) – вероятность того, что V<Vmin за счет интерференции прямой волны и волны, отраженной от поверхности Земли; Ттр(V<Vmin) – вероятность того, что V<Vmin за счет интерференции прямой волны и волны, отраженной от слоистых неоднородностей в тропосфере; Тд(V<Vmin) – вероятность того, что V<Vmin за счет ослабления радиоволны в осадках.

Для телефонного ствола на j-ом интервале

, (6.27)

где Мтф[пВт0/км2] – параметр, характеризующий аппаратуру телефонного ствола. Более подробно о порядке расчета устойчивости РРЛ для 0.1% и 0.01% времени смотрите [4]

Переходные помехи, вносимые в телефонный канал групповым трактом. Эти помехи обусловлены нелинейностью амплитудных характеристик устройств группового тракта (усилителей, модуляторов, демодуляторов и так далее). Эти помехи можно рассчитать по формуле:

, пВт, (6.28)

где ∆Fк = 3.1 кГц – ширина телефонного канала; Fв, Fн – верхняя и нижняя частот группового сигнала; Рср – средняя мощность многоканального сообщения; y2(δ), y3(δ) –κоэффициенты, учитывающие распределение мощности нелинейных шумов в групповом спектре по 2-ой и 3-ей гармоникам соответственно, где δ = (F-Fн)/(Fв-Fн), а F – некоторая частота в групповом спектре, в области которой определяются шумы. Графики y2(δ) и y3(δ) для различных значений β=Fв/Fн приведены на рисунке 6.5.6.

Рисунок 6.17. Графики зависимостей y2(δ),y3(δ), а2(δ) и а3(δ)
Рисунок 6.17. Графики зависимостей y2(δ),y3(δ), а2(δ) и а3(δ)

а2(δ), а3(δ) – поправочные коэффициенты, учитывающие перераспределение шумов в групповом спектре из-за введения предыскажений (рисунок 1.17,в). К(δ), К(δ) – коэффициенты нелинейности по 2-й и 3-й гармоникам элементов группового тракта измеренные при измерительном уровне [4].

Переходные помехи из-за неравномерности амплитудно-частотных характеристик (АЧХ) и группового времени запаздывания (ГВЗ) элементов ВЧ тракта. Эти шумы могут быть рассчитаны по формуле:

пВт, (6.29)

где , – коэффициенты учитывающие неравномерность ГВЗ: (∆τ+) – при отклонении частоты ЧМ-сигнала от ω0 на +∆ω и (∆τ-) – на -∆ω; Fк – частота в области которой оцениваются шумы.