Источники света волоконно-оптических систем передачи должны обладать большой выходной мощностью, допускать возможность разнообразных типов модуляции света, иметь малые габариты и стоимость, большой срок службы, КПД и обеспечить возможность ввода излучения в оптическое волокно с максимальной эффективностью. Для ВОСП потенциально пригодны твердотельные лазеры, в которых активным материалом служит иттрий-алюминиевый гранат, активированный ионами ниодима с оптической накачкой (например, СИД – светоизлучающий диод), у которого основной лазерный переход сопровождается излучением с длиной волны 1,064 мкм. Узкая диаграмма направленности и способность работать в одномодовом режиме с низким уровнем шума являются плюсами данного типа источников. Однако большие габариты, малый КПД, потребность во внешнем устройстве накачки являются основными причинами, по которым этот источник не используется в современных ВОСП. Практически во всех волоконно-оптических системах передачи, рассчитанных на широкое применение, в качестве источников излучения сейчас используются полупроводниковые светоизлучающие диоды и лазеры. Для них характерны в первую очередь малые габариты, что позволяет выполнять передающие оптические модули в интегральном исполнении. Кроме того, для полупроводниковых источников света характерны невысокая стоимость и простота обеспечения модуляции [10].
Первое поколение передатчиков сигналов по оптическому волокну было внедрено в 1975 году. Основу передатчика составлял светоизлучающий диод, работающий на длине волны 0.85 мкм в многомодовом режиме. В течение последующих трех лет появилось второе поколение – одномодовые передатчики, работающие на длине волны 1.3 мкм. В 1982 году родилось третье поколение передатчиков – диодные лазеры, работающие на длине волны 1.55 мкм. Исследования продолжались, и вот появилось четвертое поколение оптических передатчиков, давшее начало когерентным системам связи – то есть системам, в которых информация передается модуляцией частоты или фазы излучения. Такие системы связи обеспечивают большую дальность распространения сигналов по оптическому волокну. Специалисты фирмы NTT построили безрегенераторную когерентную ВОЛС STM-16 на скорость передачи 2.48832 Гбит/с протяженностью в 300 км, а в лабораториях NTT в начале 1990 года ученые впервые создали систему связи с применением оптических усилителей на скорость 2.5 Гбит/с на расстояние 2223 км.
Детекторы ВОСП. Функция детектора волоконно-оптических систем передачи сводится к преобразованию входного оптического сигнала, который затем, как правило, подвергается усилению и обработке схемами фотоприемника. Предназначенный для этой цели фотодетектор (ФД) должен воспроизводить форму принимаемого оптического сигнала, не внося дополнительного шума, то есть обладать требуемой широкополосностью, динамическим диапазоном и чувствительностью. Кроме того, ФД должен иметь малые размеры (но достаточные для надежного соединения с оптическим волокном), большой срок службы и быть не чувствительным к изменениям параметров внешней среды. Существующие фотодетекторы далеко не полно удовлетворяют перечисленным требованиям. Наиболее подходящими среди них для применения в волоконно-оптических системах передачи являются полупроводниковые p-i-n фотодиоды и лавинные фотодиоды (ЛФД) [10]. Они имеют малые размеры и достаточно хорошо стыкуются с волоконными световодами. Достоинством ЛФД является высокая чувствительность (может в 100 раз превышать чувствительность p-i-n фотодиода), что позволяет использовать их в детекторах слабых оптических сигналов. Однако, при использовании лавинных фотодиодов нужна жесткая стабилизация напряжения источника питания и температурная стабилизация, поскольку коэффициент лавинного умножения, а следовательно фототок и чувствительность ЛФД, сильно зависит от напряжения и температуры.
Тем не менее, лавинные фотодиоды успешно применяются в ряде современных ВОСП, таких как ИКМ-120/5, ИКМ-480/5, "Соната".
Оптические кабели ВОСП. Оптический кабель (ОК) предназначен для передачи информации, содержащейся в модулированных электромагнитных колебаниях оптического диапазона. В настоящее время используется диапазон длин волн от 0.8 до 1.6 мкм, соответствующий ближним инфракрасным волнам. В будущем возможно расширение рабочего диапазона в область дальних инфракрасных волн с длинами волн от 5 до 10 мкм. Оптический кабель содержит один или несколько световодов. Световод – это направляющая система для электромагнитных волн оптического диапазона. Практическое значение имеют только волоконные световоды, изготовленные из высоко прозрачного диэлектрика: стекла или полимера. Для концентрации поля волны вблизи оси световода используется явление преломления и полного отражения в волокне с показателем преломления, уменьшающимся от оси к периферии плавно либо скачками. Световод состоит из оптического волокна и покрытия. Оптическое волокно (ОВ) из стекла изготавливается обычно с внешним диаметром 100 – 150 мкм.
Передача света по любому световоду может осуществляться в двух режимах: одномодовом и многомодовом. Одномодовым называется такой режим, при котором распространяется только одна основная мода.
Фазовая и групповая скорости каждой моды в световоде зависят от частоты, то есть световод является дисперсной системой. Вызванная этим волноводная дисперсия является одной из причин искажения передаваемого сигнала. Различие групповых скоростей различных мод в многомодовом режиме называется модовой дисперсией. Она является весьма существенной причиной искажения сигнала, поскольку он переносится по частям многими модами. В одномодовом режиме отсутствует модовая дисперсия, и сигнал искажается значительно меньше, чем в многомодовом, однако в многомодовый световод можно ввести большую мощность [9].
Оптические волокна имеют очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фтороцирконатные волокна с теоретическим пределом порядка 0.02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.
На сегодняшний день для городской телефонной сети отечественной промышленностью выпускаются кабели марки ОК имеющие четыре и восемь волокон.
Недостатки волоконно-оптической технологии:
1. Необходимы оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.
2. Для монтажа оптических волокон требуется дорогое технологическое оборудование.
3. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями
Тем не менее, преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что, несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации. В ближайшие годы потребность в увеличении числа каналов будет расти. Наиболее доступным способом увеличения пропускной способности ВОСП в два раза является передача по одному оптическому волокну двух сигналов в противоположных направлениях. Сегодня на городских сетях связи находят применение одноволоконные ВОСП с оптическими разветвителями и со спектральным уплотнением.
/