1.4.1. Основные понятия

1.4.2. Распределение длин абонентских линий

1.4.3. Распределение емкости абонентского кабеля

1.4.1. Основные понятия

Представим абонентскую сеть в виде графа [40], который состоит из множества вершин x1, x2, ... xn и множества ребер a1, a2, ... am. Примерами структурных характеристик графа могут служить:

- число вершин графа (n), определяющее количество кабельных шкафов и других элементов абонентской сети;

- расположение любой вершины графа (xk), позволяющее указать координаты точки, в которой размещается какое-то оборудование абонентской сети;

- длина ребра графа (ak), связанная с протяженностью кабеля, прокладываемого на магистральном или распределительном участках абонентской сети;

- микроструктура ребра графа (ak), представляющая, в частности, информацию о число абонентских кабелей, проложенных в одном направлении.

Можно назвать еще несколько видов структурных характеристик. Но, с точки зрения рассматриваемых в монографии вопросов, целесообразно ограничиться двумя из них: распределение длин АЛ и распределение емкостей используемых кабелей. Эти две характеристики и рассматриваются в данном параграфе. Выбор эпиграфа, принадлежащего блестящему перу герцога Ларошфуко, должен - по замыслу автора - подчеркнуть следующее:

- приведенные ниже характеристики справедливы, как правило, для некой “усредненной” абонентской сети;

- характеристики конкретной абонентской сети могут иногда существенно отличаться от средних величин.

Зачем нужно знать распределение длин и емкостей АЛ? Подобные, сугубо практические, вопросы очень важны для исследователя. Мне (как, вероятно, многим научным работникам) приходилось сталкиваться с такими ситуациями, когда исследование, стимулированное реальной практической проблемой, трансформировалось в процесс, имеющий мало общего с ожидаемым результатом. Поэтому назовем несколько примеров практических задач, для решения которых необходимо знать структурные характеристики АЛ.

Первый пример касается интересов разработчиков нового оборудования систем передачи и Операторов, планирующих его приобретение. В [41] приводятся такие данные:

- разработано новое оборудование для передачи цифрового потока по существующим АЛ;

- технические характеристики устройства и параметры эксплуатируемых АЛ таковы, что подключение в МС возможно для абонентов, расположенных на расстоянии от точки предполагаемого подключения до 18000 футов (чуть менее 5,5 км);

- известен прогноз численности абонентов ТФОП, заинтересованных в использовании предлагаемого оборудования.

Вопрос заключается в том, чтобы более или менее достоверно оценить потенциальный рынок предлагаемого оборудования. Конечно, в первую очередь необходимо определить место, где может располагаться точка подключения терминала к телекоммуникационной системе. Если такое подключение будет выполняться на каждой коммутационной станции, то достаточно знать функцию распределения (ФР) длин АЛ. Та часть ФР, которая лежит по оси длин до величины 18000 футов, будет определять долю абонентов, могущих использовать предлагаемое оборудование. Вероятно, что искомая величина близка к 100%. Если подключение терминалов будет выполняться только в транзитных (узловых) коммутационных станциях, то необходимо анализировать совместную ФР для АЛ и СЛ. В этом случае результат будет качественно другим. По всей видимости, в [41] представлен результат именно такого анализа, так как доля потенциальных пользователей оценивается в упомянутой работе в диапазоне от 20% до 30%.

Второй пример представляет проблему, актуальную с точки зрения как производителей кабельной продукции, так и Операторов ТФОП. Знание структурных характеристик существующей абонентской сети позволяет решить следующие задачи:

- сформулировать технические требования к перспективным абонентским кабелям (километрическое затухание, число жил или оптических волокон, строительная длина и т.п.);

- оценить (по годам или иным единицам измерения) потребность в новых абонентских кабелях, если известны сроки службы эксплуатируемых линейных сооружений, прогнозы, касающиеся введения услуг, требующих существенное расширение полосы пропускания АЛ, и некоторые другие данные;

- выполнить предварительные расчеты затрат на реконструкцию системы абонентского доступа, связанную с переходом от существующей структуры сети АЛ к кольцевой.

Можно перечислить еще несколько технико-экономических задач, решение которых прямо или косвенно опирается на знание структурных характеристик существующей абонентской сети. Несомненно, что появятся и новые задачи, также связанные с этими характеристиками. Длину АЛ и емкости используемых кабелей можно рассматривать как случайные величины. По этой причине, в двух следующих параграфах рассматриваются ФР длин АЛ и емкостей абонентского кабеля.

1.4.2. Распределение длин абонентских линий

На рисунке 1.7, взятом из [12], показаны ФР длин АЛ для четырех ТФОП - России, США, Италии и Финляндии.

Распределение длин абонентских линий для ТФОП России, США, Финляндии и Италии

Рисунок 1.7

В российской ТФОП используются достаточно короткие АЛ, если сравнивать их протяженность с аналогичными величинами, характерными для телефонных сетей США, Италии и Финляндии. В ряде публикаций содержатся численные оценки длин АЛ для ТФОП других стран, которые, к сожалению, не позволяют построить соответствующие ФР. Тем не менее, результаты обработки этих данных свидетельствуют о том, что рисунок 1.7 отражает весьма общую картину относительно ФР длин АЛ для ТФОП большинства стран.

Рисунок 1.7 отличается от рисунка 3.24, приведенного в [12] одной кривой, относящейся к американской ТФОП. Это объясняется тем, что для рисунка 1.7 использованы статистические данные, приведенные в [26, 42]. Указанные в этой книге величины отражают результаты статистического обследования, проведенного в США. Они не совпадают с теми цифрами, которые были приведены в [43] и использовались для рисунка 3.24 в монографии [12]. Ряд дополнительных данных позволяет судить о высокой достоверности результатов, изложенных в [26, 42]. По этой причине на рисунке 1.7 распределение длин АЛ для ТФОП в США построено по данным, содержащимся в [26, 42].

Максимальные длины АЛ (третья колонка таблицы 1.2) представлены, на первый взгляд, невероятными величинами. Около десяти лет назад мне довелось участвовать в проведении статистических обследований труднодоступных и удаленных групп потенциальных абонентов СТС для разработки рекомендаций по их телефонизации. Полученные результаты показали, что на территории России есть регионы, в которых расстояние между группой удаленных абонентов и ближайшей АТС даже превышает максимальные длины АЛ в ТФОП в США. Аналогичные регионы есть и в других странах, что подтверждается, например, отчетом [44], подготовленным МСЭ.

Интересные данные были получены американскими специалистами при проведении в 1983 году статистического обследования абонентских сетей [42]. Используемая в [42] терминология несколько отличается от системы понятий, принятой в рекомендациях МСЭ. В частности, для измерения протяженности АЛ вводятся термины “Рабочая длина” АЛ (Working Length), “Общая длина” (Total Length) и “Суммарная длина ответвлений” (Total Bridged-Tap). Выражению “длина АЛ” для моделей, предложенных в разделе 1.2, соответствует, более всего, первый термин. Поэтому в таблице 1.2 приведены значения именно “рабочей длины” АЛ. Результаты в [42] приведены отдельно для АЛ делового и квартирного секторов.

Таблица 1.2

Тип абонентской линии

Минимальная длина АЛ

Максимальная

длина АЛ

Средняя длина АЛ

квартирный сектор

56,7 м

34801 м

3290 м

деловой сектор

61 м

30369 м

2689 м

В российской ТФОП эксплуатируются АЛ, затухание которых не превышает 4,5 дБ [29]. Эта величина не распространяется на кабели с диаметром токопроводящих жил 0,32 мм. Для АЛ с таким диаметром проводников затухание не должно превышать 3,5 дБ. Допустимая величина затухания АЛ определена из соображений качества передачи речи. С точки зрения устойчивой работы коммутационных станций, нормируется допустимое сопротивление АЛ по постоянному току. Естественно, что допустимая длина АЛ выбирается так, чтобы удовлетворялись нормы как по затуханию АЛ, так и по ее сопротивлению постоянному току.

Вывод о том, что для квартирного сектора АЛ, в среднем, длиннее, чем для делового сектора, подтверждает и рисунок 1.8, подготовленный на основе трех графиков, приведенных в [45] для североамериканской ТФОП.

Функции распределения длин абонентских линий для делового и квартирного секторов

Рисунок 1.8

Следует обратить внимание на тот факт, что для конкретной ГТС или СТС показанные на рисунке 1.8 ФР не могут считаться справедливыми. Рассмотрим такую гипотетическую модель:

- предприятия располагаются около границ пристанционного участка и не используют учрежденческо-производственные АТС (УПАТС);

- жилые дома концентрируются около места размещения РАТС, а часть абонентов подключены к ней через концентраторы.

Для подобной модели можно подобрать такие характеристики пристанционного участка и структурного состава абонентов, что кривые для делового и квартирного секторов на рисунке 1.8 поменяются местами.

Этот пример приведен для того, чтобы подойти к очень важной проблеме. Изменения в сфере производства влияют на соотношение между крупными, средними и мелкими предприятиями. Было бы полезно оценить воздействие подобных процессов на структурные характеристики сетей абонентского доступа. Второй важный фактор - современные принципы градостроения. Изменение этажности жилых зданий, роста удельного веса коттеджей и другие причины заметно влияют на структурные характеристики сетей абонентского доступа.

В [46] приведена таблица, в которой указаны две величины допустимой длины АЛ в зависимости от диаметра токопроводящих жил в кабеле. Для жил с диаметром 0,5 мм длина АЛ не должна превышать 3,22 км, а при диаметре жил 0,32 мм - 1,88 км. Конечно, встречаются и более длинные АЛ, использующие специальные усилители. Но в целом, величину 3,22 км можно считать максимальной длиной АЛ для отечественных ГТС. Минимальная длина АЛ определяется расстоянием между зданием АТС и ближайшим к нему домом. Эта величина измеряется десятками метров. Если предположить, что это расстояние составляет примерно 30 метров, то для вычисления средней длины АЛ необходимо знать закон распределения абонентов на пристанционном участке. Обычным предположением в таких ситуациях считается закон равномерной плотности [47]. Эти предположения позволяют оценить среднюю длину АЛ (при диаметре токопроводящих жил в кабеле 0,5 мм) величиной 1625 метров.

В СТС максимальная длина АЛ будет выше за счет весьма широкого использования кабелей с большим диаметром жил и воздушных цепей. В [48] приведена таблица с детальным перечислением максимальных длин АЛ в зависимости от материала и диаметра проводов, используемых для подключения телефонных аппаратов к различным типам сельских АТС. Судя по данным, содержащимся как в [48], так и в ряде других работ, в СТС могут использоваться достаточно длинные АЛ.

Графики, показанные на рисунке 1.7, характеризуют АЛ в целом, но она состоит из нескольких участков. Длины этих участков весьма интересны с практической точки зрения, поскольку создание перспективной сети абонентского доступа в ряде случаев начинается с замены отдельных фрагментов АЛ. В [49] для шведской ТФОП приводится следующее распределение длин различных участков абонентской сети:

- магистральный участок (primary network) - 1700 метров или 79,1% от общей протяженности АЛ;

- распределительный участок (secondary network) - 400 метров или 18,6% от общей протяженности АЛ;

- абонентская проводка (distribution network) - 50 метров или 2,3% от общей протяженности АЛ.

Пример из отечественной практики проектирования приведен в [50], где рассматривается модель абонентской сети, построенная на базе кабеля с диаметром токопроводящих жил 0,32 мм. Из-за разницы диаметров проводников абсолютные значения длин заметно расходятся с теми, что характерны для шведской ТФОП. Существенно то, что наблюдается хорошее соответствие между процентным соотношением длин по одноименным участкам АЛ (в скобках указана разница для величин, выраженных в процентах):

- магистральный участок - 886 метров или 74,7% от общей протяженности АЛ (отклонение составляет 4,4%);

- распределительный участок - 240 метров или 20,2% от общей протяженности АЛ (отклонение составляет 1,6%);

- абонентская проводка - 60 метров или 5,1% от общей протяженности АЛ (отклонение составляет 2,8%).

В существующей практике проектирования абонентских сетей [50 - 52] считается, что все АЛ, умещающиеся в круге с центром в кроссе и радиусом примерно 500 метров, целесообразно включать в коммутационную станцию по бесшкафной системе. Эту часть абонентской сети иногда называют “зоной прямого питания”.

Достоинства и недостатки шкафной системы хорошо изложены в технической литературе, касающейся аспектов проектирования абонентской сети [50 - 52]. Известны также численные оценки по оптимальному расположению распределительных шкафов. В частности, в [52] рекомендуется устанавливать распределительные шкафы емкостью на 1200 АЛ (ШР-1200х2) на расстоянии не менее 650 м от кросса АТС.

Кабели связи, используемые в абонентской сети, могут заметно различаться по своей емкости в зависимости от многих факторов, из которых весьма существенны:

- емкость коммутационной станции, для которой создается абонентская сеть;

- участок абонентской сети (магистральный или распределительный), для которого оцениваются структурные характеристики;

- градостроительные принципы, использованные для застройки в той части городской или сельской местности, где установлена коммутационная станция.

В отечественной технической литературе мне не удалось найти сведений, касающихся соответствующей статистики. Поэтому пришлось провести обработку данных, полученных из реальных проектов абонентских сетей. Анализ реальных проектов позволил получить новую информацию, относящуюся к применению различных кабелей связи. Результаты расчета ряда параметров абонентских сетей, проведенного на основе пяти проектов, представлены в таблице 1.3.

Таблица 1.3

Номер проекта

Средняя длина АЛ

Коэффициент вариации длины АЛ

1

1298 м

0,45

2

1513 м

0,57

3

797 м

0,47

4

1216 м

0,86

5

1571 м

0,49

Если сравнить данные, приведенные в таблицах 1.2 и 1.3, то сразу же бросается в глаза следующее: средняя длина АЛ для российских ГТС существенно меньше аналогичной величины для североамериканской ТФОП. Этот факт объясняется рядом причин. Основными из них, по всей видимости, можно считать два обстоятельства:

- специфика градостроительных принципов, используемых в России и странах Северной Америки [53];

- разные нормы на допустимую величину затухания АЛ, принятые в России [29] и в Северной Америке [54].

В [26] приведены некоторые данные, позволяющие считать, что средняя длина АЛ в российской ТФОП меньше, чем аналогичная величина в телефонных сетях многих других стран мира. В частности, средняя длина АЛ во Франции составляет 1,7 км, в Тайване - 1,85 км, в Австралии - 2,1 км, в Южной Корее - 2,2 км.

Длина АЛ и емкость магистрального кабеля, в терминах общей теории статистики [55], относятся к первичным признакам. А с учетом формы их представления в проектной документации обе эти величины следует считать дискретными. Следовательно, ФР длин АЛ (для каждого проекта) представляет собой спупенчатую функцию.

Для рассматриваемых проектов были построены пять ФР длин АЛ [56]. Проверка гипотезы относительно их принадлежности к одной генеральной совокупности осуществлялась по критерию Уилкоксона [57] при уровне значимости 5%. За исключением третьего проекта - для него характерны весьма короткие АЛ - все ФР оказались подобными.

В результате анализа статистических данных по всем пяти проектам можно выделить следующие “усредненные” характеристики абонентской сети: математическое ожидание длины АЛ - 1280 м, коэффициент вариации этой величины - 0,59. Более подробные статистические оценки, полученные при анализе ряда конкретных проектов по созданию абонентских сетей, содержатся в работе [56].

Эти данные - с учетом тенденций изменения структурных характеристик абонентских сетей - хорошо согласуются с оценками, полученными специалистами Акционерного общества “Гипросвязь СПб” при анализе проектов, выполненных в 80-х годах [58]. Расчеты, проведенные на основе этих проектов, определяют характеристики абонентской сети следующим образом: математическое ожидание длины АЛ - 1517,6 м при коэффициенте вариации - 0,61.

ФР длин АЛ для пяти исследованных проектов можно сравнить с кривой, приведенной на рисунке 1.7 для российской ТФОП. Такое сопоставление - рисунок 1.9 - интересно по той причине, что данные, использованные для рисунка 1.7, получены более десяти лет назад.

Функции распределения длин для пяти реальных проектов абонентской сети

Рисунок 1.9

Проверка этих двух ФР по критерию Уилкоксона показала, что гипотеза об их принадлежности к одной генеральной совокупности верна.

1.4.3. Распределение емкости абонентского кабеля

Анализ величин, касающихся емкости абонентского кабеля, проводился по тем же пяти проектам, что послужили исходными данными для результатов, изложенных в предыдущем параграфе. Рассматривался магистральный участок абонентской сети. Соответствующие кабели обычно имеют большую емкость, а по мере приближения к распределительным шкафам постепенно распаиваются на линии меньшей емкости. В таблице 1.4 приведены средние значения и коэффициенты вариации емкости магистрального кабеля.

Таблица 1.4

Номер проекта

Средняя емкость магистрального кабеля

Коэффициент вариации емкости магистрального кабеля

1

807

0,47

2

1172

0,48

3

300

0,51

4

494

0,40

5

533

0,22

Для рассматриваемых пяти проектов были построены ФР емкости магистрального кабеля. Результирующая ФР представлена на рисунке 1.10 [56]. Проверка гипотезы относительно их принадлежности к одной генеральной совокупности осуществлялась по критерию Уилкоксона [57] при уровне значимости 5%. Результаты расчетов показали, что распределение емкостей магистрального кабеля идентично для 67% всех попарных сравнений.

Функция распределения емкости магистрального кабеля для пяти реальных проектов абонентской сети

Рисунок 1.10

Среднее значение емкости магистрального кабеля составляет 761 пару, а коэффициент вариации этой величины равен 0,42. Эти данные не так хорошо согласуются с оценками, полученными специалистами Акционерного общества “Гипросвязь СПб” при анализе проектов, выполненных в 80-х годах [58]: средняя емкость магистрального кабеля 400 пар при коэффициенте вариации, равном 0,59.

Все подобные оценки, безусловно, нуждаются в критическом осмыслении при изучении перспективных сетей абонентского доступа, имеющих иную структуру и реализуемых на базе современных технических средств. Введением в эту проблему может служить следующий раздел первой главы, в котором сформулированы качественные аспекты эволюции абонентских линий.