3.3.1. Определение лазера

3.3.2. Определение резонатора для лазера

3.3.3. Конструкции и принцип действия полупроводниковых лазеров

3.3.4. Классы лазерных устройств для систем оптической связи

3.3.1. Определение лазера

Лазер (LASER, Light Amplification by Stimulated Emission of Radiation) – прибор, генерирующий оптическое когерентное излучение на основе эффекта вынужденного, симулированного излучения.

Свойство когерентности излучения лазера предполагает согласованное протекание во времени и пространстве колебательных или волновых процессов. Излучаемая лазером электромагнитная волна называется когерентной, если ее амплитуда, частота, фаза, направление распространения и поляризация постоянны или изменяются упорядоченно.

Для представления процессов, происходящих в лазере, рассматривается простейшая двухуровневая модель (рисунок 3.6).

Рисунок 3.6. Двухуровневая модель процессов в лазере

Рисунок 3.6. Двухуровневая модель процессов в лазере

В присутствии электромагнитного излучения (фотонов определенной энергии) с подходящей длиной волны в подходящем веществе (газе, жидкости, твердом теле, полупроводнике) могут наблюдаться индуцированные переходы между электронными состояниями: поглощение фотонов, спонтанное излучение фотонов и стимулированное излучение фотонов. При переходе между состояниями электронов с энергией Ev и Ес излучение имеет частоту

(3.4)

т.е. в свободном пространстве наблюдается волна

(3.5)

где h – постоянная Планка, с – скорость света.

При взаимодействии излучения с атомами вещества, находящимися в нижнем энергетическом состоянии, может произойти поглощение квантов излучения (фотонов) и атомы перейдут на верхний энергетический уровень. Спонтанное излучение фотонов может происходить случайно. Когда во взаимодействии с излучением принимает участие возбужденный атом, т.е. находящийся в верхнем энергетическом состоянии, вместо спонтанного излучения может произойти стимулированное излучение. Оно имеет одинаковую частоту и фазу с индуцирующим излучением. Благодаря этому могут быть получены такие характеристики излучения как узкополосность, направленность, возможность модуляции в широкой полосе частот.

Все три вышеуказанных процесса можно связать между собой уравнением Эйнштейна [8, 13]:

(3.6)

где E(f) – полная энергия поля фотонов на единицу объема материала;

А21 – коэффициент, определяемый вероятностью спонтанного перехода в единицу времени с уровня ЕС на уровень EV;

В21 и В12 – коэффициенты, определяемые вероятностью вынужденного перехода электронов с энергетического уровня ЕС на EV и наоборот; таким образом, произведение В12 E(f) характеризует вероятность поглощения, а произведение В21E(f) – вероятность вынужденного излучения;

N1 и N2 – число возбужденных электронов.

Физический смысл уравнения Эйнштейна можно представить так: левая часть определяет поглощение энергии внешнего фотонного поля в единицу времени, а правая – полную энергию, выделяемую в веществе в виде спонтанного и стимулированного излучения. Условие вынужденного излучения записывается:

(3.7)

При одинаковых В21 и В12 должны быть созданы условия инверсной населенности N2 > N1, что трактуется как необходимость усиления электронов (возбуждение электронов).

Таким образом, для создания условия стимулированного излучения необходимо выполнение неравенства

(3.8)

что свидетельствует о необходимости получения сильного электромагнитного поля (высокой концентрации фотонов) в веществе. Исходя из вышеотмеченного, можно сделать вывод о конструкции лазера (рисунок 3.7).

Для того, чтобы вещество стало источником когерентного излучения, оно должно иметь область с инверсной населенностью (N2 > N1) и связанную с ней область пространства (резонатор), в которой происходит увеличение энергии фотона в единице объема за счет стимулированного излучения (E(f) > 1). Фотонное поле создается отражателями фотонов, образующими резонансную систему.

Рисунок 3.7 Общая конструкция лазера

3.3.2. Определение резонатора для лазера

Что такое резонатор? В широком смысле резонатором называют колебательную систему, в которой возможно накопление энергии электромагнитных, акустических или механических колебаний. В пространственных (объемных) резонаторах могут возбуждаться колебания только определенных длин волн и определенной структуры, образующие стоячую волну. Частоты этих колебаний называются резонансными или собственными частотами резонатора, а колебания модами резонатора.

Резонатор лазера для системы оптической связи должен быть сконструирован таким образом, чтобы в нем сохранялось небольшое число мод, а остальные должны гаситься. Для этого резонаторы делаются открытыми. Пример конструкции резонатора открытого типа (Фабри – Перо) приведен на рисунке 3.8.

Электромагнитные волны, распространяясь вдоль оси резонатора, будут отражаться от зеркал перпендикулярно их поверхности и интерферировать между собой и образуют стоячие волны (моды).

Рисунок 3.8. Резонатор Фабри – Перо

Рисунок 3.8. Резонатор Фабри – Перо

Условие образования стоячих волн записывается:

(3.9)

где m = 1, 2, 3,... – число полуволн.

Частотное расстояние между двумя ближайшими колебаниями определяется соотношением

(3.10)

С учетом показателя преломления среды внутри резонатора можно записать:

(3.11)

где n > 1. Также можно показать, что

(3.12)

Открытый резонатор способствует разрежению мод по сравнению с объемным из-за того, что волны, распространяющиеся в резонаторе под углом не слишком малым, после нескольких отражений выходят из резонатора.

Важной характеристикой резонатора является его добротность [13]:

(3.13)

где R – коэффициент отражения зеркал.

Пример: L = 0,5 мм; R = 0,3; n = 3,6; l = 0,85 мкм.
Q = 5787

Для создания инверсной населенности в веществе, помещаемом в резонатор, используются следующие методы: оптическая накачка, газовый разряд, химическая накачка, газодинамическая накачка и другие [3]. В технике оптических систем связи в основном используются полупроводниковые материалы для изготовления лазеров. Источником накачки приборов в этом случае является источник электрического тока. Основу конструкции лазера на полупроводниках составляют гетеропереходы, т.е. слои полупроводников с различными квантовыми и оптическими характеристиками.

3.3.3. Конструкции и принцип действия полупроводниковых лазеров

Известно множество типов конструкций полупроводниковых лазеров. Они подразделяются на простейшие (гомолазеры) и двойной гетероструктуры (ДГС), в которых используются резонаторы Фабри – Перо и электронные полоски (полосковые) с селекцией продольных мод, с распределенной обратной связью (РОС), с распределенными брэгговскими отражателями (РБО), связанно – сколото - составные (С3), с внешней синхронизацией мод и так далее [2, 3, 4, 6, 8, 13, 31, 41, 69, 78]. В рамках ограниченного по объему учебного пособия не представляется возможным рассмотреть достаточно подробно все эти конструкции. Поэтому внимание будет уделено только четырем конструкциям, которые чаще всего применяются в оптических передатчиках систем связи. Это многомодовый лазерный диод полосковой геометрии с резонатором Фабри – Перо (обозначается Ф-П), лазер с распределенной обратной связью и распределенными брэгговскими отражателями (РОС, РБО) и лазер с вертикальным резонатором ЛВР.

Конструкция полоскового лазера Ф-П представлена на рисунке 3.9.

Название "двойная гетероструктура" обозначает, что эта конструкция имеет двойной слой различных по свойствам полупроводников, прилегающих к активному слою, которые отличают эту конструкцию от простейшего лазера [13]. Полупроводниковые слои оболочки имеют меньший показатель преломления, чем у активного слоя. Благодаря этому, в активном слое создается волновой канал с высокой плотностью носителей зарядов и фотонов. Активный слой имеет толщину около 0,1 ¸ 1 мкм. В нем с помощью источника электрического тока создается инверсная населенность. Внутренние поверхности торцов отшлифованы и превращены в зеркала.

Рисунок 3.9. Конструкция полоскового лазера Ф-П с двойной гетероструктурой

Рисунок 3.9. Конструкция полоскового лазера Ф-П с двойной гетероструктурой

При малых токах накачки в активной области возникает спонтанное излучение, как и в СИД. При этом активная область излучает спонтанные фотоны во все стороны, и большая их часть покидает прибор через полупрозрачные зеркала (R » 0,33). Лишь единицы из них отражаются обратно и проходят строго в плоскости активного слоя к противоположному зеркалу. Сталкиваясь с возбужденными атомами, они отдают им кванты энергии и вызывают вынужденную рекомбинацию электронов и дырок. Вновь возникают фотоны, которые будут согласованы между собой и вызвавшими их фотонами. При малых токах накачки количество вынужденных фотонов мало. При увеличении тока возрастает инверсная населенность и при N2 > N1 может произойти полное поглощение спонтанного излучения вынужденным. Ток, при котором это происходит, называется пороговым. После порогового тока резко нарастает мощность излучения. Такой режим работы прибора называется лазерной генерацией (рисунок 3.10).

Рисунок 3.10. Характеристика лазерной генерации мощности

Рисунок 3.10. Характеристика лазерной генерации мощности

Точные условия лазерной генерации подробно изложены в [31]. Они основаны на решении системы дифференциальных уравнений, связывающих плотность фотонов и концентрацию носителей заряда в активном слое.
Условия лазерной генерации имеют фазовую составляющую

(3.14)

N = 1, 2, 3...
и амплитудную составляющую

(3.15)

где К u – коэффициент усиления среды на длине резонатора L, a - коэффициент затухания среды, R – коэффициент отражения (~0,33).

Таким образом, лазер представляет собой оптический квантовый генератор, в котором для возбуждения и поддержания электромагнитных колебаний должны выполняться условия баланса фаз и амплитуд.

Спектральная характеристика лазера определяется размерами резонатора, спектром спонтанного излучения и выполнением условий генерации (рисунок 3.11).

Рисунок 3.11. Спектральная характеристика лазера

Рисунок 3.11. Спектральная характеристика лазера

Для излучения лазером максимальной мощности необходимо добиться совпадения максимальной мощности спектра спонтанного излучения и собственных мод резонатора. Реальная спектральная характеристика лазера Ф-П представлена на рисунке 3.12

Спектральная характеристика представляет совокупность мод генерации. Ширина спектра оценивается на уровне –3 дБм от максимальной мощности (Рмакс/2).

Излучение лазера, выходящее через торец, характеризуется диаграммой направленности. Угловая расходимость когерентного излучения обусловлена фундаментальными пределами

(3.16)

где А – апертура излучателя, l - длина волны центральной моды.

Для полупроводникового лазера величина угла расходимости оценивается постой формулой:

(3.17)

где dx и dy – размер излучающей площадки по горизонтали и вертикали.

Реальный угол расходимости составляет:
j x ~ 5 ¸ 10 град, j y ~ 15 ¸ 30 град.

Рисунок 3.12. Спектральная характеристика лазера Ф–П

Рисунок 3.12. Спектральная характеристика лазера Ф–П

Необходимо отметить, что характеристики излучения лазера не остаются постоянными. Например, величина порогового тока сильно зависит от температуры тела лазера

(3.18)

где t i > t1. На рисунке 3.13 приведены графики зависимости порогового тока лазера от температуры.

Рисунок 3.13. Зависимость порогового тока от температуры лазера

Для снижения зависимости порогового тока лазера от температуры в конструкциях применяют микрохолодильники на основе эффекта Пельтье [112], т.е. отбора излишков тепловой энергии материалами сплавного типа при прохождении через них электрического тока определенной величины.

При изменении величины тока накачки в лазере происходит изменение спектрального состава, что при модуляции тока накачки информационным сигналом приводит к динамическому уширению спектра и перескоку максимальной мощности излучения с одних мод на другие [8].

Широкий спектр лазерных мод затрудняет процесс передачи информационных сигналов по волоконно-оптическим линиям связи из-за дисперсии импульсов оптической мощности. Для преодоления этой проблемы разработаны различные конструкции одномодовых лазеров. Чаще других применяют лазеры типа РОС, распределенная обратная связь (в англоязычной литературе DFB, Distributed Feed Back) и лазеры с брэгговскими отражателями РБО (в англоязычной литературе DBR, Distributed Brag Reflector); лазеры с вертикальными резонаторами ЛВР (в англоязычной литературе VCSEL, Vertical-Cavity Surface Emitting Laser).

В отличие от лазеров Ф-П в лазерах РОС и РБО положительная обратная связь, необходимая для генерации лазерного излучения, создается не за счет зеркал, локально расположенных на торцах резонатора, а образуется внутри самого лазера. В лазерах РОС такая связь создается благодаря распределенной структуре под названием "гофр". Это граница между резонатором и другим диэлектрическим слоем (рисунок 3.14).

Обратная связь в лазере РОС осуществляется за счёт брэгговского рассеяния волн на гофре, который представляет собой фазовую дифракционную решетку с очень высокой разрешающей способностью, являющейся «распределённым резонатором». Качественная картина этого процесса состоит в следующем. Волна, распространяющаяся в активном слое справа влево, испытывает частичные отражения от гофра, в результате чего образуются дифрагированные волны, распространяющиеся в противоположном направлении, т.е. слева направо.

Рисунок 3.14. Конструкция лазера РОС

Рисунок 3.14. Конструкция лазера РОС

При этом волна, распространяющаяся вправо, ослабевает в направлении к левому краю, т.к. её энергия перекачивается в волну противоположного направления, интенсивность которой возрастает при сложении отраженных волн в фазе. Т.о. электромагнитное поле в резонаторе РОС можно представить в виде двух волн, распространяющихся в противоположных направлениях. Внутри резонатора могут сохраниться только волны, отражающиеся от гофра под углом Q+ p/2. Это обусловлено селективностью обратной связи, для которой длину волны настройки на отражение в резонаторе вычисляют через условие Брэгга – Вульфа

Λ×nэ×(1+SinQ) = I×λ0, (3.19)

где L - период гофра, nЭ – эффективный фазовый показатель преломления, l – целое число, l0 – длина волны излучения в свободном пространстве. Для Q = p/2 шаг гофра может быть определен:

(3.20)

при этом, как правило, значение l = 1.

Для повышения мощности излучения в одномодовый лазер РОС может быть встроено с одного из торцов зеркало.

Длина волны, обозначенная в (3.20) l, называется длиной волны Брэгга. Ей соответствует частота генерации

(3.21)

где L – длина активного слоя с гофром, с – скорость света в свободном пространстве.

Важнейшей характеристикой одномодового лазера РОС является спектр излучения (рисунок 3.15)

Рисунок 3.15. Спектр излучения лазера РОС

Рисунок 3.15. Спектр излучения лазера РОС

Обычно ширина спектра излучения лазера РОС оценивается на уровне –20 дБм от максимального значения мощности. Кроме того, в спектре могут наблюдаться боковые моды, величина подавления которых должна быть не менее 30 дБ.

Одномодовые лазеры РОС являются одними из основных источников излучения для протяженных волоконно-оптических линий.

Лазеры РБО имеют другую конструкцию (рисунок 3.16), в которой активная область излучения находится вне зоны фильтрации моды. Это построение обеспечивает формирование спектральной линии уже, чем у лазера РОС на порядок.

Рисунок 3.16. Конструкция лазера РБО

Рисунок 3.16. Конструкция лазера РБО

Характеристики некоторых видов одномодовых и многомодовых полупроводниковых лазеров приведены в таблице 3.1 [79].

Таблица 3.1 Характеристики полупроводниковых лазеров

Изделие Длина волны, нм Мощность, мВт Ток накачки, мА Ширина спектра, нм Примечание
ИЛПН-206-М 1270-1330 1-2 40-80 3-10
ИЛПН-206-2 1270-1330 1.5-2.5 30-80 5
ИЛПН-234-А 1500-1600 3.0 30-85 0.1 Угловая расходимость 1.3 град
ИЛПН-234-Б 1500-1600 4.0 45-100 0.1 Угловая расходимость 1.3 град

Для получения высокой стабильности излучения лазеров разработаны также лазеры с вертикальными резонаторами ЛВР (рисунок 3.17), обозначаемые VCSEL (Vertical-Cavity Surface Emitting Laser). В этих лазерах генерация оптического излучения происходит поперек p-n перехода. Преимущество короткого высококачественного резонатора ЛВР заключается в генерации моды узкого спектра высокой стабильности. Такие лазеры могут формироваться группами на одной подложке микросхемы. При этом стабилизация параметров производится сразу для всего лазерного массива. Слои отражателя выполнены из набора четвертьволновых пластин, фильтрующих моду излучения. Они формируют структуру распределенного брэгговского отражателя DBR. Слои изолятора уменьшают спонтанную эмиссию фотонов.

Рисунок 3.17. Конструкция лазера ЛВР

Рисунок 3.17. Конструкция лазера ЛВР

3.3.4. Классы лазерных устройств для систем оптической связи

Максимальное лазерное излучение зависит от типа используемого лазерного диода. Международный стандарт IEC 825 определяет максимальный уровень лазерного излучения для каждого лазерного класса в соответствии с длиной волны (в классы входят лазерные диоды и оптические усилители).

Таблица 3.2. Классы лазерных устройств по международному стандарту IEC 825

Класс лазера Длина волны излучения, нм Максимальная мощность лазерного излучения, мВт
1 1300 8.85
1550 10
1300 31
1550 50
к×3А 1300 81
1550 50
1300 500
1550 500