1.2. Функция, способы задания, простейшие свойства
1.1. Комплексные числа (КЧ)
Комплексным числом z называется выражение z = a+bi, где , i – мнимая единица. i 2 = –1.
a – действительная часть КЧ или a = Re z.
b – мнимая часть КЧ или b = Im z.
0+bi = bi - чисто мнимое число
a + 0i = a - действительное число
0 + 1i = i |
1 + 0i = 1 |
0 + 0i = 0 |
мнимая единица |
обычная единица |
обычный нуль |
Z1 = a1 + b1i
Z2 = a2 + b2i
Действия над КЧ
Z1 Z2 = (a1 a2) + (b1 b2)i – сложение/вычитание КЧ.
Возведение в степень мнимой единицы:
i1 = i i2 = – 1 i3 = i i4 = 1
Z1 Z2 = (a1 + b1i)(a2 + b2i) = a1a2 + a1b2i
+ a2b1i
+ b1b2i2 =
= (a1a2 – b1b2) + (a1b2 + a2b1)i – произведение КЧ.
Сопряженным числом () для данного комплексного числа называется число, которое отличается только знаком мнимой части от данного числа.
Пример:
– деление КЧ.
Пример:
Комплексная плоскость
Z = a + bi – алгебраическая форма записи КЧ.
Модуль КЧ
Аргумент КЧ
Аргумент КЧ – .
Полярная система координат
Декартова система. Полярная система
– полярный радиус, – полярный угол, – полярные координаты.
;
Пример:
– тригонометрическая форма записи КЧ.
Примеры:
Формула Эйлера
– Формула Эйлера |
– взаимосвязь между e, i и |
– показательная форма КЧ.
КЧ не сравнивают между собой. Множество КЧ не упорядоченно.
Возведение в степень КЧ
При возведении в степень модуль возводиться в эту степень, а аргумент умножается на показатель степени.
Формула Муавра
Возведение во 2 – ю и 3 – ю степень по формуле Муавра:
Используя равенство КЧ, получим: s
Извлечение корня из КЧ
k = 0, 1…,n – 1. |
Корень n – ой степени из КЧ имеет n различных значений.
Примеры:
Все корни n-ой степени из единицы находятся на единичной окружности и делят эту окружность на n равных частей.
1.2. Функция, способы её задания, простейшие свойства
Основные обозначения:
N – натуральные числа,
Q – рациональные(дробные),
Z – целые числа,
R – действительные числа;
Счетное множество – это множество, элементы которого можно пересчитать.
– счетные и имеют одинаковую мощность
R – несчетное множество.
Множество действительных чисел всюду плотно на числовой оси.
[a, b] – замкнутый интервал, (a, b) – открытый интервал
Окр [x0] – окрестность точки x0 , любой открытый интервал, содержащий x0.
Окр [x0] = (a, b), где (a, b) содержит x0 – это окрестность.
ax0 = x0b, – окрестность x0
Кванторы
1) – кванты всеобщности;
2) – кванты существования.
|x – x0| – расстояние от точки x до точки x0
Числовой функцией называется соответствие между числовыми множествами XY, при котором каждому значению x соответствует (сопоставлено) некоторое значение y.
У каждого прообраза всегда один образ, у каждого образа может быть много прообразов.
Взаимнооднозначная функция – это когда разные x имеют разные y.
Способы задания функций:
а) аналитический;
б) графический;
в) табличный;
г) алгоритмический.
Функции делятся на 2 класса
- Элементарные
- Неэлементарные (специальные).
Элементарные функции изучаются в школьной математике и делятся на:
- Основные элементарные функции
а) степенные y = xn
б) показательные y = ax
в) тригонометрические y = sin x и другие.
- Элементарные, полученные из основных с помощью арифметических операций и операции получения сложной функции (операции композиции).
f
X Y
f -1 (обратная функция)
Обратные к показательным функциям – логарифмические функции. Обратные к тригонометрическим
Пример:
y = f (g(x)) – сложная функция – композиция элементарных функций.
Элементарными функциями называются функции, полученные из элементарных базисных функций с помощью алгебраических операций и операций композиции.
Г(f) – график функции. График функции есть множество точек (x, y), где y = f(x).
Общие свойства функций
- Четность –
- Нечетность –
- Периодичность –
f(x) – ограниченная сверху, если
f(x) – ограниченная снизу, если
f(x) – ограниченная, если
f(x) – монотонная, если она постоянно возрастает или постоянно убывает
Если y = f(x), то Д – область определения данной функции.
Свойства модулей суммы и разности
1.3. Предел функции. Свойства пределов
Число b называется пределом функции в точке а, если для любой – окрестности точки b существует – окрестность точки а.
– предел функции при , равный b.
Число b называется пределом функции при неограниченном возрастании аргумента .
Для любого существует такое N, и если , то .
Примеры:
y = f(x) =
y = f(x) = x2
Пример:
y =, когда ,
Неопределенности:
Раскрытие неопределенностей.
Теорема об ограниченности функции, имеющей предел
Если функция f(x) имеет предел в точке a , то она ограниченна в некоторой окрестности точки a.
Доказательство:
Пусть , тогда , отсюда получаем .
Обратное неверно.
Контрольный пример:
в окрестности точки 0.
– не существует.
Бесконечно малой величиной при называется функция, предел которой в точке a равен 0.
– бесконечно малая величина (б.м.в.).
- – бесконечно малая величина при
- – бесконечно малая величина при
s
Бесконечно большой величиной при называется функция неограниченно возрастающая.
– бесконечно большая величина (б.б.в.)
Любая бесконечно большая величина неограниченна.
Теорема о связи предела и бесконечно малой величины
Если , то , где – бесконечно малая величина. Или .
Доказательство:
Допустим, что , тогда .
, значит , – бесконечно малая величина.
Пример:
f(x) = x2 + 1
Теорема о связи бесконечно малой и бесконечно большой величиной
Если – бесконечно малая величина при – бесконечно большая величина.
Если – бесконечно большая величина при
– бесконечно малая величина.
Доказательство:
Допустим, что – бесконечно малая величина при , то , что .
Значит
Следствие: и
Свойства бесконечно малых величин
1) Алгебраическая сумма бесконечно малых величин есть бесконечно малая:
Доказательство:
или , значит – бесконечно малая величина.
2) Произведение бесконечно малой величины на ограниченную функцию есть бесконечно малая: , где f(x) – ограниченная.
Доказательство:
, значит – бесконечно малая величина.
3) Частное от деления бесконечно малой величины на любую функцию, предел которой не равен 0, есть бесконечно малая: при и .
Теоремы о пределах
Теорема 1. Предел суммы равен сумме пределов, если они существуют:
Доказательство:
Из теоремы о связи между пределом и бесконечно малой величиной следует:
Получаем
Теорема 2. Предел произведения равен произведению пределов, если они существуют:
Доказательство:
Из теоремы о связи между пределом и бесконечно малой величиной следует:
Получаем
Теорема 3. Предел частного равен частному пределов: .
При условии: все пределы существуют и .
Доказательство:
Из теоремы о связи между пределом и бесконечно малой величиной следует:
;
Получаем:
Теорема 4. Предел сохраняет знак неравенства. Если .
Доказательство:
Следовательно,
Следствие:
Теорема 5. Если функция ограниченна и монотонна на (a, b), то она имеет предел:
Теорема 6. Критерий Коши.
Если , тогда и только тогда .
Приемы раскрытия неопределенностей.
1) Выделение общего множителя (для неопределенности ).
Пример:
2) Умножение на сопряженное выражение (для неопределенности ).
Пример:
3) Выделение главной части (для неопределенности ).
Примеры:
;
Теорема. Первый замечательный предел .
Доказательство (геометрическое):
Так как ,
то .
Следствия из теоремы:
1)
2)
3)
4)
5)
Теорема. Второй замечательный предел .
Доказательство:
Бином Ньютона:
,
где .
Используем бином Ньютона для доказательства неравенства:
Отсюда заключаем, что ,
а значит .
Следствия из теоремы:
1)
2)
3)
4)
Доказательство:
Если принять, что ,
то
Примеры:
1)
Учитывая, что .
2)
. Отсюда A = e.
Учитывая, что .
Сравнение бесконечно малых величин (б.м.в.)
Пусть – бесконечно малые величины при , т.е. .
Определение 1. Если , то – б.м.в. одного порядка малости.
Определение 2. Если , то – б.м.в. более высокого порядка, чем .
– более высокого порядка, чем ("о" – читается как "о малое").
– более низкого порядка, чем ("О" – читается как "О большое").
Определение 3. Если , то и эквивалентны – .
Следствие из определения 3: при .
Теорема. Если и эквивалентны (), то и .
Доказательство:
Пусть – бесконечно малые величины при и они эквивалентны ().
Тогда .
1.4. Непрерывность функции в точке и на интервале
Определение 1.
Пусть функция определена в окрестности точки , тогда функция непрерывна в , если .
Определение 2.
Функция непрерывна, если.
Определение 3.
Функция непрерывна в точке , если .Приращение аргумента . Приращение функции .
Определение 4. Функция непрерывна в точке , если .Если функция не является непрерывной в точке , то эта точка – точка разрыва. Если функция непрерывна на отрезке (a, b), то функция неразрывна на отрезке (a, b).
Определение 5.
Функция непрерывна в точке справа, если .
Определение 6.
Функция непрерывна в точке слева, если .
Функция непрерывна на отрезке , если она непрерывна в каждой внутренней точке этого отрезка и односторонне непрерывна на его концах.
Теоремы о непрерывных функциях
Теорема 1. Сумма, произведение и частное непрерывных функций – непрерывны (кроме случая, когда знаменатель обращается в нуль).
Доказательство:
Пусть и .
Тогда .
Доказательство для умножения и деления аналогично доказательству для сложения.
Теорема 2. Композиция непрерывных функций непрерывна:
Функция непрерывна в точке , если g(x) непрерывна в точке и f(y) непрерывна в .
Теорема 3. Все элементарные функции непрерывны в своей области определения.
Разрывы функции
Разрыв первого рода
Пусть и существуют:
I. Если , то в точке функция
испытывает разрыв скачок первого рода.
Примеры:
-
- – целая часть числа x.
- – дробная часть от числа x.
II. Если , то в точке функция испытывает устранимый разрыв первого рода.
Примеры:
1)
2)
3)
4)
Разрыв второго рода
Функция испытывает разрыв второго рода, если – не существует.
Свойства функции, непрерывной на замкнутом отрезке
Пусть функция непрерывна на замкнутом отрезке .
Теорема 1. Функция принимает наибольшее и наименьшее значение на .
Или , где .
Теорема 2. Функция принимает все свои промежуточные
значения на .
Или , где – область значений.
Теорема 3. Если функция принимает на концах отрезка значения разных знаков, то внутри отрезка найдется точка, в которой .
Или .