5.4.1. Два важных значения

5.4.2. Бюджет канала обычно вычисляется в децибелах

5.4.3. Какой нужен резерв

5.4.4. Доступность канала

При оценке производительности системы наибольший интерес представляет такой параметр, как отношение сигнал/шум (signal-to-noise ratio — SNR), или . Причина — это основной фактор, определяющий возможность обнаружения сигналов при шуме с приемлемой вероятностью ошибки. Поскольку в спутниковых системах связи наиболее распространенной структурой сигнала является модулированная несущая с постоянной огибающей, в качестве интересующего нас отношения SNR мы можем использовать среднее отношение мощности несущей к шуму (carrier power-to-noise power) C/N. Фактически для передачи сигналов с постоянной огибающей данное додетекторное отношение SNR часто используется в форме одного из эквивалентных выражений.

Здесь Рr S, С и N — принятая мощность, мощность сигнала, мощность несущей и мощность шума, а к, Т° и Wэто константа Больцмана, температура в Кельвинах и ширина полосы. Действительно ли Pr/N или S/Nэто всегда одно и то же, что и отношение несущей к шуму (C/N)? Нет, мощность сигнала и мощность несущей совпадают только при передаче сигналов с постоянной огибающей (угловой модуляции). Рассмотрим, например, частотно-модулированную (frequency modulated — FM) несущую, выраженную через модулирующий сигнал m(t).

Здесь К - константа системы. Средняя мощность в модулирующем сигнале равна . Повышение этой модулирующей мощности приводит только к увеличению частотного отклонения s(t); это означает, что несущая расширяется на больший спектр, но ее средняя мощность остается равной А2/2, независимо от мощности модулирующего сигнала. Таким образом, частотная модуляция (FM), являющаяся примером передачи сигналов с постоянной огибающей, характеризуется тем, что мощность принятого сигнала равна мощности несущей.

Для линейной модуляции, такой как амплитудная модуляция (amplitude modulation — AM), мощность несущей несколько отличается от мощности модулирующего сигнала. Рассмотрим, например, выражение несущей через модулирующий сигнал m(t).

Если предположить, что среднее m(t) равно нулю, то среднюю мощность несущей можно записать следующим образом.

Из приведенного выше выражения видно, что при амплитудной модуляции мощность несущей отличается от мощности сигнала. Итак, параметры C/N и Pr/N совпадают при передаче сигналов с постоянной огибающей (например, при модуляциях PSK или FSK) и отличаются в остальных случаях (например, при модуляциях ASK, QAM).

Выражение для Pr/N можно получить, разделив обе части уравнения (5.11) на мощность шума N.

(5.18)

Формула (5.18) применима к любому одностороннему радиочастотному каналу. При использовании аналоговых приемников ширина полосы шума (обычно называемая эффективной или эквивалентной полосой шума), видимая демодулятором, обычно превышает ширину полосы сигнала, и отношение Pr/Nэто основной параметр при определении возможности обнаружения сигнала и качества работы системы связи. При цифровых приемниках обычно реализуются корреляторы или согласованные фильтры, и ширина полосы сигнала обычно принимается равной ширине полосы шума. Как правило, мощность шума на входе не рассматривают, а обычной формулировкой отношения SNR для цифровых каналов связи является замещение мощности шума спектральной плотностью мощности шума. С помощью формулы (5.17) выражение (5.18) можно переписать следующим образом.

(5.19)

Здесь эффективная шумовая температура системы Тoэто функция шума, излучаемого на антенну, и теплового шума, генерируемого на первых каскадах приемника. Отметим, что коэффициент усиления принимающей антенны Gr и системную температуру T° можно объединить в один параметр Gr/T, иногда именуемый добротностью приемника (receiver figure-of-merit). Причина такой трактовки этих членов раскрывается в разделе 5.6.2.

Следует обратить внимание на то, что эффективная температура Т° — это параметр, моделирующий результат воздействия различных источников шума; подробнее этот вопрос рассмотрен в разделе 5.5. В формуле (5.19) был введен множитель L0, описывающий все факторы, ослабления и ухудшения, которые не учтены остальными членами уравнения (5.18). Множитель L0 включает большой набор различных источников ослабления и ухудшения, перечисленных ранее. Итак, в уравнении (5.19) связываются ключевые параметры любого анализа канала связи: отношение спектральной плотности мощности принятого сигнала к шуму (P/N0), эффективная переданная мощность (EIRP), добротность приемника (Gr/T0) и потери (Ls, L0). В настоящее время мы пытаемся развить методологический подход к отслеживанию потерь и прибылей в канале связи. Имея вначале некоторый ресурс мощности, мы с помощью формулы (5.19) можем вычислить суммарное отношение сигнал/шум, имеющее место на "лицевой стороне" детектора (додетекторной точке). Нашей целью является система "бухучета" (весьма подобная используемой в коммерции), бронирующая активы и пассивы и подводящая итог в виде чистого дохода (или потери). Формула (5.19) имеет как раз подобный, нужный нам предпринимательско-коммерческий вид. Все параметры (эффективная излученная мощность, добротность приемника), входящие в числитель, подобны коммерческим активам, а все параметры, фигурирующие в знаменателе, — пассивам.

Итак, предполагая, что вся принятая мощность Рr находится в модулирующем (переносящем информацию) сигнале, мы можем связать Eb/N0 и SNR из уравнения (3.30) и записать следующее.

(5.20,а)

(5.20,б)

и

(5.20,в)

Здесь Rскорость передачи битов. Если часть принятой мощности — это мощность несущей (т.е. имеем потерю мощности сигнала), мы по-прежнему можем использовать уравнение (5.20), за исключением того, что мощность несущей дает вклад в множитель потерь L0 в формуле (5.19). Полученная в уравнении (5.20) фундаментальная связь между и Pr/N0 весьма пригодится нам в дальнейшем при проектировании и оценке систем (см. главу 9).

5.4.1. Два важных значения Eb/N0

— это (согласно принятым обозначениям) отношение энергии бита к спектральной плотности мощности шума, необходимое для получения заданной вероятности ошибки. Для облегчения вычисления пределов рабочего диапазона или запаса прочности М необходимо различать требуемое отношение и реальное (или принятое) отношение . С этого момента первое мы будем обозначать как ()треб, а последнее — ()прин. Иллюстрация приведена на рис. 5.9, где на графике обозначены две рабочие точки. Первая связана с РB = 10-3; далее будем называть эту рабочую точку требуемой системной достоверностью передачи. Предположим, что заданная достоверность получается при ()треб, равном 10 дБ. Вы думаете, что наша задача — создать систему, демодулятор которой получит точно эти 10 дБ? Разумеется, нет; мы определим и спроектируем систему с запасом прочности, так что реально принятое ()прин будет несколько больше ()треб.

Рис. 5.9. Два важных значения

Таким образом, мы должны разработать систему, которая бы работала на второй рабочей точке, показанной на рис. 5.9; в нашем случае ()прин = 12 дБ и РВ = 10-5. Для данного примера мы можем описать запас прочности, или энергетический резерв линии связи (link margin), как дающий улучшение РВна два порядка или (более привычная формулировка) энергетический запас линии связи можно описать как обеспечивающий на 2 дБ большее отношение , чем требуется. Перепишем выражение (5.20), введя параметр энергетического резерва линии связи М.

(5.21)

Разность в децибелах между ()прини ()требдает энергетический резерв линии связи.

(5.22)

Параметр ()треб отражает различия в структурах систем; эти различия могут быть вызваны отличиями схем модуляции или кодирования. Большее, чем ожидалось, отношение ()треб может объясняться субоптимальной системой передачи в радиочастотном диапазоне, дающей значительные ошибки синхронизации или допускающей больший шум в процессе обнаружения, чем идеальный согласованный фильтр.

Объединяя уравнения (5.19) и (5.21) и выражая энергетический резерв линии связи M, получаем следующее.

(5.23)

Уравнение (5.23), выражение энергетического резерва линии связи, содержит все параметры, влияющие на достоверность передачи по каналу связи. Некоторые из этих параметров определяются относительно конкретных точек системы. Например, отношение определяется на входе приемника. Если говорить более точно, то на входе детектора (додетекторной точке), где амплитуда напряжения демодулируемого сигнала пропорциональна принятой энергии, составляющей основу процесса принятия решения относительно значения принятого символа. Подобным образом любой параметр, описывающий принятую энергию или мощность, полезную или паразитную, также определяется относительно этой додетекторной точки. Добротность приемника определяется на входе принимающей антенны, где Grусиление принимающей антенны, а Т° — эффективная температура системы (см. раздел 5.5.5). Эффективная мощность излучения EIRP — это мощность, связанная с электромагнитной волной на выходе передающей антенны. Итак, всегда нужно помнить, что каждый из параметров , и EIRP вычисляется в определенной точке системы и никак иначе.

5.4.2. Бюджет канала обычно вычисляется в децибелах

Поскольку бюджет канала обычно вычисляется в децибелах, уравнение (5.23) можно переписать следующим образом.

(5.24)

Мощность переданного сигнала EIRP выражается в децибел-ваттах (дБВт); спектральная плотность мощности шума N0в децибел-ваттах на герц (дБВт/Гц); усиление антенны Gr — в децибелах относительно изотропного усиления (дБ[i]); скорость передачи данных Rв децибелах относительно величины 1 бит/с (дБбит/с); все остальные члены выражаются в децибелах (дБ). Численные значения параметров, фигурирующих в уравнении (5.24), составляют бюджет канала связи, полезное средство распределения ресурсов связи. Для поддержания положительного баланса мы должны найти приемлемое соотношение между всеми параметрами; мы можем снизить мощность передатчика путем предоставления избыточного резерва или увеличить скорость передачи данных путем снижения ()треб (посредством выбора лучших схем модуляции и кодирования). Любой децибел в уравнении (5.24), независимо от параметра, не лучше и не хуже любого другого децибела — децибел есть децибел. Система передачи "не знает и знать не хочет", откуда приходят децибелы. Пока в приемнике обеспечивается надлежащее отношение , система имеет необходимую достоверность передачи. Впрочем, введем еще два условия, которые необходимо будет удовлетворить при получении заданной вероятности ошибки, — должна поддерживаться синхронизация и должно минимизироваться или компенсироваться искажение, вызванное межсимвольной интерференцией. Может возникнуть вопрос: если система не отдает предпочтения источнику поступления децибелов в отношение , то как мы должны распределять приоритеты поиска достаточного числа децибелов. Ответ таков: мы должны искать наиболее рентабельные децибелы. Это и будет путеводной нитью нескольких следующих глав, посвященных кодам коррекции ошибок, поскольку именно для этой области характерно историческое развитие в направлении снижения стоимости оборудования, позволяющего получить более достоверную передачу.

5.4.3. Какой нужен резерв?

Вопрос о величине энергетического запаса, встроенного в систему, возникает довольно часто. Ответ на него заключается в следующем. Если строго описать (учесть наиболее неблагоприятные варианты) все источники усилений и ослаблений сигнала и шума и считать дисперсию параметров канала (например, вследствие погодных условий) максимальной из возможных, то потребуется незначительная дополнительная надбавка энергетического запаса. Требуемый запас прочности зависит от степени достоверности каждой позиции бюджета канала. Для системы, в которой задействованы новые технологии или новые рабочие частоты, потребуется больший запас, чем для системы, которая создавалась и тестировалась уже неоднократно. Иногда в бюджете канала связи как отдельная позиция фигурирует затухание вследствие погодных условий. В других случаях требуемое значение энергетического запаса отражает требования канала при данном ухудшении параметров вследствие дождя. Для спутниковой связи на полосе частот С (линия связи "земля-спутник" использует частоту 6 ГГц, линия связи "спутник-земля" — частоту 4 ГГц), где все параметры хорошо известны и ведут себя довольно хорошо, систему можно проектировать всего лишь с 1 дБ энергетического запаса. Настроенные только на прием телевизионные станции, которые используют параболические антенны диаметром 16 футов и работают в полосе частот С, часто проектируются с энергетическим запасом, составляющим всего доли децибела. В то же время телефонная связь через спутник, которая использует стандарт 99,9% доступности канала, требует значительно большего энергетического запаса; в некоторых системах INTELSAT резерв составляет порядка 4-5 дБ. Если вычисления выполняются не для самого неблагоприятного варианта, а для фактически имеющегося, расчет обычно производится для совместимых дисперсий оборудования в рабочем диапазоне температур, перепадов напряжения в линии и длительностей передач. Кроме того, для спутниковой связи могут приниматься предположения о возможных ошибках отслеживания местонахождения спутника.

Проекты с использованием высоких частот (например, 14/12 ГГц) обычно требуют значительных (погодных) энергетических запасов, поскольку атмосферные потери крайне разнообразны и их влияние увеличивается с частотой. Следует отметить, что побочные продукты поглощения вследствие атмосферных потерь больше шума антенны. При использовании малошумящих усилителей даже небольшие погодные изменения могут привести к увеличению температуры антенны на 40-50 К. В табл. 5.1 показан анализ канала связи для спутника непосредственного вещания, предложенный Федеральной комиссии по средствам связи (Federal Communications Commission — FCC) США корпорацией Satellite Television. Отметим, что бюджет для линии связи "спутник-земля" рассчитан для двух альтернативных погодных условий: ясной погоды и ослабления на 5 дБ вследствие дождя. Ослабление сигнала из-за атмосферного поглощения составляет только малую долю децибела при ясной погоде и 5 дБ — при дожде. Следующий пункт в таблице для линии связи "спутник-земля", G/T° домашнего приемника, показывает дополнительное ухудшение качества, вызванное дождем; принимающая антенна излучает дополнительный тепловой шум, что приводит к увеличению эффективной шумовой температуры системы To и уменьшению G/T° домашнего приемника (от 9,4 дБ/К до 8,1 дБ/К). Следовательно, при выделении дополнительного энергетического запаса на потери вследствие погодных условий, одновременно следует выделять дополнительный резерв для компенсации увеличения шумовой температуры системы.

Таблица 5.1. Спутник непосредственного вещания (Direct Broadcast Satellite — DBS), предложенный Satellite Television Corp.

Небольшое замечание относительно спутниковых каналов связи: в промышленности часто встречаются выражения типа "канал может быть закрыт", т.е. значение энергетического запаса в децибелах положительно и удовлетворяются существующие требования к достоверности передачи, или "канал не может быть закрыт" — значение энергетического запаса отрицательно и существующие требования к достоверности передачи не будут удовлетворяться. Хотя при использовании выражений "канал закрывается" или "канал не закрыт" создается впечатление работы по принципу "включено/выключено", на самом деле незакрытый канал (или отрицательный энергетический запас) означает, что достоверность передачи не удовлетворяет системным требованиям; это не обязательно означает прекращение связи. Рассмотрим, например, систему, показанную на рис. 5.9, с ()треб = 10 дБ и ()прин = 8 дБ. Пусть 8 дБ соответствует РB -10-2. Следовательно, энергетический запас равен -1 дБ, а фактическая вероятность появления ошибочного бита в 10 раз превышает заданную. В то же время, несмотря на сниженную достоверность передачи, канал по-прежнему может использоваться.

5.4.4. Доступность канала

Доступность канала обычно является мерой долговременного использования канала, сформулированной на среднегодовой основе; для данного географического местоположения доступность канала показывает процентное отношение времени, в течение которого канал может быть закрыт. Например, для конкретного канала связи между Вашингтоном и спутниковым ретранслятором долговременная синоптическая ситуация может быть такой, что погодного запаса 10 дБ достаточно для закрытия канала связи 98% времени; для 2% времени проливные дожди приводят к большему, чем на 10 дБ, ухудшению параметра SNR, так что канал не закрывается. Поскольку воздействие шума на SNR зависит от частоты сигнала, доступность канала и требуемый энергетический запас должны изучаться в контексте конкретной частоты передачи.

На рис. 5.10 обобщаются значения доступности каналов глобальных спутников на частоте 44 ГГц. Данный график иллюстрирует процентное отношение видимости земной поверхности (каналы закрыты и заданная вероятность ошибки достигается) как функцию энергетического запаса для трех равномерно размещенных геостационарных спутников. Геостационарный спутник расположен на круговой орбите в той же плоскости, что и земная экваториальная плоскость, и его синхронная высота над уровнем моря равна 35 800 км. Период обращения спутника равен периоду обращения Земли; таким образом, спутник стационарно висит над определенной точкой земной поверхности. На рис. 5.10 показано семейство кривых видимости, отличающихся требуемыми значениями параметра доступности канала, от качественного (доступность 95%) до достаточно точного (99%). Вообще, при фиксированном энергетическом запасе видимость обратно пропорциональна требуемой доступности, а при фиксированной доступности она монотонно растет с увеличением запаса [8]. На рис. 5.11—5.13 для трех различных значений энергетического запаса канала затененными и чистыми областями показаны части земной поверхности, в которых канал 44 ГГц не может быть закрыт 99% времени. На рис. 5.11 показан охват каналом различных мест при энергетическом запасе 14 дБ. Отметим, что с помощью рисунка можно вычислить области наибольших ливней, такие как Бразилия и Индонезия. На рисунке представлены результаты расчета канала, выполненного с использованием синоптической модели Земли.

На рис. 5.11 выделяются заштрихованные полоски на восточных и западных границах поля зрения каждого спутника. Как вы думаете, почему канал недоступен в данных областях? На краях земной поверхности, видимой со спутника, расстояние между спутником и наземной станцией больше расстояния между точкой, находящейся, непосредственно под спутником, и спутником. Ухудшение качества происходит вследствие сочетания трех элементов: (1) большее расстояние распространения приводит к уменьшению спектральной плотности мощности на принимающей антенне; (2) в местах, расположенных на границе охвата, усиление, получаемое с помощью спутниковой антенны, снижается, если антенна специально не спроектирована для равномерного охвата всего поля зрения (обычная схема — это -3 дБ на крайних лучах по сравнению с пиковой амплитудой в центре луча); и (3) при распространении к точкам на границе охвата сигналу приходится пройти больший путь через атмосферы (это объясняется наклонным путем и кривизной земной поверхности). Последнее является самым важным для сигналов на частотах, наиболее поглощаемых атмосферой. Почему подобные заштрихованные области отсутствуют около северного и южного полюсов на рис. 5.11? Снегопад не имеет (на распространение сигнала) такого же отрицательного эффекта, как ливень; данный феномен называется эффект замораживания.

Рис. 5.10. Зависимость охвата земной поверхности от энергетического запаса линии связи при различных значениях доступности канала. (Перепечатано с разрешения Lincoln Laboratory из L. M. Schwab. "World- Wide Link Availability for Geostationary and Critically Inclined Orbits Including Rain Effects", Lincoln Laboratory, Rep. DCA-9, Jan., 27, 1981, Fig. 14, p. 38)

На рис. 5.12 показаны части земной поверхности, которые 99% времени могут (и не могут) закрывать канал 44 ГГц с запасом 10 дБ. Отметим, что, по сравнению с запасом 14 дБ, затененные области стали значительно больше; теперь восточный берег Соединенных Штатов, Средиземноморье и большая часть Японии 99% времени не могут закрывать канал. На рис. 5.13 подобные рабочие характеристики канала показаны для энергетического запаса 6 дБ. Если на рис. 5.11 можно определить регионы наибольшей дождливости, то на рис. 5.13 видны наиболее засушливые регионы Земли. Видим, что подобными областями являются юго-западные части Соединенных штатов, большая часть Австралии, побережья Перу и Чили, а также пустыня Сахара в Африке.