14.5.1. Обзор технологии цифровой абонентской линии DSL

14.5.2. Технологии цифровых абонентских линии DSL и их функциональные особенности

14.5.2.1. Цифровая абонентская линия IDSN

14.5.2.2. Асимметричная цифровая абонентская линия ADSL

14.5.2.3. Цифровая абонентская линия с адаптацией скорости соединения R-ADSL

14.5.2.4. Сверхвысокоскоростная цифровая абонентская линия VDSL

14.5.2.5. Высокоскоростная цифровая абонентская линия HDSL

14.5.2.6. Однолинейная цифровая абонентская линия SDSL

14.5.2.7. Высокоскоростная цифровая абонентская линия HDSL 2

14.5.2.8. Сверхбыстродействующие цифровые абонентские линии SHDSL и G.shdsl

14.5.2.9. Цифровой абонентский доступ по линии электропередачи PCL

14.5.3. Стандартные конфигурации проводного широкополосного доступа

14.5.1. Обзор технологии цифровой абонентской линии DSL

В последние годы сети доступа (СД) являются наиболее динамичным сегментом телекоммуникационной отрасли. Они непосредственно связаны с предоставлением операторских услуг абонентам, поэтому СД хорошо окупаются даже в условиях неблагоприятной экономической ситуации. Поэтому можно с уверенностью сказать, что СД находятся в фазе развития, что делает их технически и финансово привлекательными.

Традиционно абонентские кабельные сети состояли из двух видов [29]:

- телефонные сети на медных НЧ кабелях

- распределительные коаксиальные сети кабельного или эфирного телевидения.

Хотя телефония и сейчас остается наиболее востребованной услугой, значительно вырос спрос на услуги доступа к транспортным сетям (в том числе доступа к сети Интернет) не только среди офисных центров, но и среди домашних пользователей. В последнее время популярна концепция «тройной услуги» (Triple Play) которая предусматривает предоставление через одну сеть услуг: телефонии, передачи данных и видеоинформации. Кроме того, повышение спроса на широкополосный доступ определяется развитием новых технологий [29]:

- видео по запросу (VOD),

- потоковое видео, видеоконференции,

- интерактивные игры,

- передача голоса в компьютерных сетях (VoIP),

- телевидение высокой четкости (HDTV)

- и другие.

Сеть, состоящая из пар витых медных проводов, которая изначально предназначалась только для обеспечения телефонной связи между различными абонентами (рисунок 14.14), постепенно превращается в сеть широкополосных каналов, способных поддержать высокоскоростную передачу данных и другие широкополосные телекоммуникационные службы. Разработанная для аналоговых телефонных линий технология (аналоговые модемы, предназначенные для передачи по телефонным линиям) имеет очень ограниченную скорость передачи данных — до 56 Кбит/с. Но, благодаря использованию на абонентской кабельной сети современных технологий, разработанных специально для витых пар проводов, те же самые линии, которые ранее использовались для традиционной телефонной связи и передачи данных со скоростью до 56 Кбит/с могут поддерживать эффективную высокоскоростную передачу данных, при этом сохраняя возможность одновременного использования абонентской линии и для традиционной телефонной связи. Новую ступень развития удалось преодолеть благодаря использованию технологий DSL (рисунок 14.15) [30].

Рисунок 14.14 - Использование полосы пропускания канала в телефонии

Рисунок 14.15 - Использование полосы пропускания канала при организации DSL

Для конечных пользователей технологии DSL обеспечивают высокоскоростное и надежное соединение между сетями или с сетью Интернет, а телефонные компании получают возможность исключить потоки данных из своего коммутационного оборудования, оставляя его исключительно для традиционной телефонной связи.

Обеспечение высокоскоростной передачи данных по медной двухпроводной абонентской телефонной линии достигается установкой оборудования DSL на абонентском конце линии и на «конечной остановке» магистральной сети высокоскоростной передачи данных, которая должна находится на телефонной станции, которой подключена данная абонентская линия. Если на абонентской линии с использованием технологии DSL организована высокоскоростная передача данных, информация передается в виде цифровых сигналов в полосе гораздо более высоких частот, чем та, которая обычно используется для традиционной аналоговой телефонной связи. Это позволяет значительно расширить коммуникационные возможности существующих витых пар телефонных проводов [30].

Использование технологий DSL на абонентской телефонной линии позволило превратить абонентскую кабельную сеть в часть сети высокоскоростной передачи данных [30]. Кроме обеспечения высокоскоростной передачи данных, технологии DSL являются эффективных средством организации многоканальных служб телефонной связи. С помощью технологии VoDSL (голос по DSL) можно объединить большое количество каналов телефонной (голосовой) связи и передать их по одной абонентской линии, на которой установлено оборудование DSL [30].

Все технологии DSL (ISDN, HDSL, SDSL, ADSL, VDSL и SHDSL) разработаны для обеспечения высокоскоростной передачи данных по телефонным линиям, изначально предназначенным для осуществления голосовой связи в спектре частот 300 Гц - 3,4 кГц. Развитие технологий цифровой обработки сигнала (DSP) в сочетании с новейшими алгоритмами и технологиями кодирования позволили поднять информационную емкость сетей доступа до 55 Мбит/с. Ширина используемой полосы частот увеличилась на два порядка за последнее десятилетие: от приблизительно 100 кГц для узкополосной ISDN до более чем 10 МГц для VDSL [30].

Пополняемое семейство технологий DSL (Digital Subscriber Line, цифровая абонентская линия) является достаточно новым и позволяет эффективно использовать полосу пропускания медных телефонных линий. Благодаря многообразию xDSL пользователь может выбрать для себя подходящий вариант по скорости приема/передачи данных – от 32 Кбит/с до более чем 50 Мбит/с. И в первую очередь выбор будет основываться на типе и количестве имеющихся у пользователя пар, их качестве и протяженности. При этом следует определиться с необходимостью одновременного использования и аналоговой телефонной связи, и цифровой высокоскоростной передачи данных по одним и тем же линиям, соединяющим телефонные станции с абонентами [32].

Рисунок 14.16 - xDSL-технологии и занимаемые ими частоты (по данным компании ZyXEL)

Рисунок 14.16 - Зависимость скорости передачи данных от расстояния для пары сечением 0,4 мм (по данным компании ZyXEL)

На данный момент все многообразие протоколов DSL можно разделить на два класса [32]:

- симметричные

- несимметричные.

Первые, как правило, требуются крупным компаниям для налаживания равноправного обмена. Например, SHDSL-оборудование изначально нацелено на решение задач, требующих высокой надежности передачи данных с гарантированным качеством обслуживания. Передачи симметричных потоков данных в обе стороны необходимы, при многоканальном голосовом обмене и для видеоконференц-связи.

Вторые отражают суть работы с IT-технологиями мелких компаний, филиалов, удаленных офисов и частных пользователей – большая часть трафика загружается из глобальных сетей, а от клиента зачастую исходят лишь запросы на получение информации и отсылаются квитанции-подтверждения. Поэтому вполне закономерно, что по числу подключенных клиентов ADSL стала наиболее востребованной и массовой технологией широкополосного удаленного доступа в мире [32].

В настоящее время наибольшее распространение в мировой практике получили следующие разновидности технологии xDSL:

- ADSL - ассиметричная цифровая абонентская линия;

- HDSL – скоростная цифровая абонентская линия;

- MDSL – среднескоростная цифровая абонентская линия;

- VDSL – высокоскоростная цифровая абонентская линия;

- RA-HDSL – цифровая абонентская линия со ступенчатой регулировкой скорости;

- SDSL – симметричная абонентская линия, работающая по одной паре;

- SHDSL – симметричная высокоскоростная абонентская линия, работающая по одной паре;

- IDSL – цифровая абонентская линия для одной пары проводов, используемой для передачи сигналов ISDN.

Подробные технические характеристики отдельных технологий DSL, а также их типовое применение приведены в таблицах ниже.

Таблица 14.4 - Сравнительные возможности наиболее значимых xDSL

Критерий

G.SHDSL

ADSL

ADSL2

ADSL2+

ADSL2++

VDSL

Число пар в линии

До 4

1

1

1

1

до 2

Длина линии сечением 0,4 мм, км

до 6 без регенерации, до n×6 с регенерацией

5

5

5

5

до 1,2 по 1 паре до 2 по 2 парам

Максимальная скорость (к абоненту/от абонента), Мбит/с

2,3 по 1 паре 4,6 по 2 парам

8/1

12/1

24/2

48/3

18/16 (QAM) 50/30 (DMT)

Работа «поверх» телефонной линии

нет

да

да

да

да

да

Регенерация

Только для цифровых потоков

нет

нет

нет

нет

нет

Возможность работы модема «друг на друга»

да

нет

нет

нет

нет

да

Таблица 14.5 – Сравнение технологий хDSL

Технология DSL

Тип передачи

Максимальная скорость

(прием/передача)

Max расстояние

Количество телефонных пар

Основное применение

ADSL

Асимметричный

24 Мбит/с / 3,5 Мбит/с

5,5 км

1

Доступ в Интернет, голос, видео, HDTV (ADSL2+)

IDSL

Симметричный

144 кбит/с

5,5 км

1

Передача данных

HDSL

Симметричный

1,544…2,048 Мбит/с

4,5 км

1,2

Объединение сетей, услуги E1

SDSL

Симметричный

2 Мбит/с

3 км

1

Объединение сетей, услуги E1

VDSL

Асимметричный

62 Мбит/с / 26 Мбит/с

1,3 км на max. скорости

1

Объединение сетей, HDTV

SHDSL

Симметричный

2,32 Мбит/с

до 7,5 км

1

Объединение сетей

UADSL

Асимметричный

1,5 Мбит/с / 384 кбит/с

3,5 км на max. скорости

1

Доступ в Интернет, голос, видео

RADSL

Асимметричный

8 Мбит/с / 640 кбит/с

3-5 км в зависимости от диаметра провода

--

--

MDSL

Диапазон может быть в любой пропорции разделен между нисходящим и восходящим трафиком 768 кбит/с

3-5 км в зависимости от диаметра провода

--

--

Ether Loop

Симметричный

до 1,5 Мбит/c

--

--

--

Таблица 14.6 - Типовое применение популярных стандартов DSL

Таблица 14.7 - Подробные технические характеристики популярных технологий DSL в зависимости от дальности расположения абонентов

Перечисленные технологии используются для организации как симметричных так и асимметричных связей. Данный перечень не исчерпывается приведенным выше списком, в который вошли только перспективные, по мнению авторов, технологии. Самые распространенные из них более подробно рассматриваются ниже. Опыт внедрения в России и за рубежом показал, что их применение позволяет уменьшить затраты на организацию абонентского доступа к высокоскоростным услугам сети примерно вдвое по сравнению с вариантом использования оптического кабеля. Выбор конкретной технологии зависит от характера абонентской сети, типа передаваемой информации и экономической целесообразности ее применения.

Резюмируя, можно сформулировать некоторые рекомендации по применению описанных выше технологий. В целом можно отметить, что xDSL-технологии эффективны для решения телекоммуникационных задач на этапах развития проектов начального уровня [60]:

- как «удлинитель» Ethernet — организациям и компаниям с территориально ограниченной сетевой инфраструктурой (учебные, научно-исследовательские центры, складские комплексы, аэропорты, заводы, супермаркеты и т. д.), планирующими быстрое объединение разнесенных подразделений в единую сеть;

- операторам связи и Интернет-провайдерам, предоставляющим доступ в Интернет по выделенным линиям и желающим увеличить скорость подключения абонентов на существующих линиях;

- когда требуется оперативно и недорого объединить в локальную сеть несколько удаленных подразделений, один из которых расположен в непосредственной близости от телефонной станции или между ними уже имеется телефонная проводка, а дополнительное кабилирование технически или экономически затруднительно.

Технология SHDSL эффективна в следующих случаях [60]:

- когда требуется быстрое и надежное объединение разнесенных подразделений, расположенных на относительно большом расстоянии (до 7–8 км), в единую сеть;

- когда необходимо обеспечить симметричное дуплексное соединение с гарантированной полосой пропускания и высокими параметрами скорости и дальности передачи данных по витой паре; при наличии другого SHDSL-оборудования взаимная совместимость SНDSL-устройств с оборудованием разных производителей позволяет совместно использовать как модульные концентраторы, так и отдельные пары модемов, соответствующие этому стандарту;

- в критически важных приложениях — в системах управления производством, в ведомственных сетях передачи данных благодаря дальности и надежности связи;

- в любых случаях при условии, что можно «пожертвовать» линией аналоговой телефонной связи, так как SHDSL не оставляет возможности сохранить обычную телефонную связь на линии одновременно с передачей данных.

Технологии ADSL эффективны в следующих случаях [60]:

- для интернет-провайдеров, предоставляющих массовый доступ в Интернет, поскольку базой для внедрения ADSL-сервисов является существующая инфраструктура распределительной телефонной сети, а также на предприятиях при концентрации пользователей в зонах обслуживания местной АТС,

- когда требуется быстро и дешево подключить несколько территориально разнесенных пользователей в единую сеть узлов, расположенных на относительно небольшом расстоянии (до 4–5 км), при этом, однако, на центральном узле необходимо использовать многопортовые концентраторы;

- при дефиците кабельной емкости на магистральных и распределительных кабелях и необходимости сохранить обычную телефонную связь на используемых линиях.

Технология VDSL эффективна в следующих случаях [60]:

- операторам связи и интернет-провайдерам наряду с ADSL— и SНDSL-решениями на небольших удалениях (до 1,5 км) от точек присутствия с целью предоставления услуг нового качества в рамках имеющегося бюджета;

- для интеграции существующих Ethernet-сетей со строящейся телефонной сетью, например в отелях, офисах, складских комплексах;

- для предоставления интегрированных услуг передачи данных и телефонии в бизнес-центрах, гостиничных комплексах, коттеджных поселках с возможностью сохранить обычную телефонную связь на используемых линиях;

- в многоквартирных жилых домах, когда требуется оперативно и надежно предоставить доступ в Интернет и есть доступ к домовой телефонной проводке;

- при сверхвысоких требованиях к пропускной способности канала передачи данных, дефиците кабельной емкости на магистральных и распределительных телефонных кабелях и необходимости сохранить обычную телефонную связь на используемых медных линиях.

14.5.2. Технологии цифровых абонентских линии DSL и их функциональные особенности

DSL представляет собой набор различных технологий, позволяющих организовать цифровую абонентскую линию. Для того, чтобы понять данные технологии и определить области их практического применения, следует понять, чем эти технологии различаются. Прежде всего, всегда следует держать в уме соотношение между расстоянием, на которое передается сигнал, и скоростью передачи данных, а также разницу в скоростях передачи «нисходящего» (от сети к пользователю) и «восходящего» (от пользователя в сеть) потока данных.

14.5.2.1. Цифровая абонентская линия IDSN

Сокращение DSL (Digital Subscriber Line — Цифровая абонентская линия) изначально использовалось по отношению к ISDN-BA (доступ базового уровня к цифровой сети связи с интеграцией услуг) [31].

В большинстве своем модемы ISDN-BA используют технологию компенсации эхо-сигналов, которая позволяет организовать полностью дуплексную передачу на скорости 160 Кбит/с по одной ненагруженной паре телефонных проводов. Трансиверы ISDN-BA, в которых используется технология эхоподавления, позволяют использовать полосу частот приблизительно от 10 кГц до 100 кГц, а пик спектральной плотности мощности систем DSL, базирующихся на 2B1Q, находится в районе 40 кГц с первым спектральным нулем на частоте 80 кГц. 4-уровневый линейный код PAM (амплитудно-импульсная модуляция, прямая, немодулированная передача), известный как 2B1Q, был разработан компанией BT Laboratories. ETSI (Европейский институт телекоммуникационных стандартов) адоптировал этот код для Европы и также в качестве альтернативы разработал линейный код 4B3T (MMS43), в основном используемый в Германии [31].

Системы ISDN-BA выгодно отличаются тем, что могут использоваться на длинных телефонных линиях, и большая часть абонентских линий допускает использование данных систем. Данная технология уже используется в течение значительного времени, и за последние годы было достигнуто значительное улучшение рабочих характеристик трансиверов [31].

Передача данных по линии DSL обычно осуществляется по двум каналам «В» (каналам передачи информации) со скоростью 64 Кбит/с по каждому, плюс по каналу «D» (служебному каналу), по которому со скоростью 16 Кбит/с передаются сигналы управления и служебная информация, иногда он может использоваться для пакетной передачи данных. Это обеспечивает пользователю возможность доступа со скоростью 128 Кбит/с (плюс передача служебной информации — итого 144 Кбит/с). Дополнительный служебный канал в 16 Кбит/с предоставляется для встроенного служебного канала, который предназначен для обмена информацией (например, статистики работы линии передачи данных) между LT (линейным окончанием) и NT (сетевым окончанием). Обычно встроенный эксплуатационный канал недоступен конечному пользователю [31].

Рисунок 14.17 - Концепция ISDN-BA базового уровня (DSL)

По всему миру было установлено несколько миллионов линий ISDN‑BA. Потребность в линиях ISDN значительно увеличилась, так как значительно выросла потребность в высокоскоростном доступе в сеть Интернет [31].

Технология IDSL обеспечивает полностью дуплексную передачу данных на скорости до 144 Кбит/с. В отличие от ADSL возможности IDSL ограничиваются только передачей данных. Несмотря на то, что IDSL, также как и ISDN, использует модуляцию 2B1Q, между ними имеется ряд отличий. В отличие от ISDN линия IDSL является некоммутируемой линией, не приводящей к увеличению нагрузки на коммутационное оборудование провайдера. Также линия IDSL является «постоянно включенной» (как и любая линия, организованная с использованием технологии DSL), в то время как ISDN требует установки соединения [33].

14.5.2.2. Асимметричная цифровая абонентская линия ADSL

Технология ADSL (Asymmetric Digital Subscriber Line - асимметричная цифровая абонентская линия) также была разработана в Северной Америке в середине 1990-х годов. Она была разработана для предоставления таких услуг, которые требуют асимметричной передачи данных, например, видео по запросу, когда требуется передавать большой поток данных в сторону пользователя, а в сторону сети от пользователя передается гораздо меньший объем данных [31].

Такая асимметрия, в сочетании с состоянием «постоянно установленного соединения» (когда исключается необходимость каждый раз набирать телефонный номер и ждать установки соединения), делает технологию ADSL идеальной для организации доступа в сеть Интернет, доступа к локальным сетям (ЛВС) и т.п. При организации таких соединений пользователи обычно получают гораздо больший объем информации, чем передают. Технология ADSL обеспечивает скорость «нисходящего» потока данных в пределах от 1,5 Мбит/с до 8 Мбит/с и скорость «восходящего» потока данных от 640 Кбит/с до 1,5 Мбит/с. ADSL позволяет передавать данные со скоростью 1,54 Мбит/с на расстояние до 5,5 км по одной витой паре проводов. Скорость передачи порядка 6 —8 Мбит/с может быть достигнута при передаче данных на расстояние не более 3,5 км по проводам диаметром 0,5 мм [33, 34].

Для ADSL требовалось очень высокое качество передачи (коэффициент битовых ошибок BER не менее 1´10—9), потому что была нужна технология передачи потоков видеоданных с кодировкой MPEG, характеризующейся очень высоким битрейтом и низкой избыточностью, когда даже единичные ошибки оказывают значительное влияние на качество изображения. Это потребовало использования технологий чередования данных и FEC (упреждающая коррекция ошибок), которые никогда не рассматривались по отношению к ISDN-BA или HDSL. Ценой за это послужило увеличение времени ожидания. Именно поэтому ранние системы ADSL имели задержку в 20 мс по сравнению с ISDN-BA или HDSL, которые не превышали предел в 1,25 мс [31].

Кроме того, что технология ADSL обеспечивает крайне асимметричную передачу данных, она также отличается от ISDN-BA/HDSL тем, что позволяет использовать ту же самую пару проводов для традиционной телефонной связи. Для этого используются специальные устройства разделения сигналов (сплиттеры) - см. рис. 14.18 [31].

Рисунок 14.18 - Концепция асимметричной цифровой абонентской линии (ADSL)

ADSL использует технологию FDD (частотное разделение для обеспечения дуплексной связи), которая позволяет выделить одну полосу частот для восходящего потока данных (направление от пользователя к станции), а другую полосу частот — для нисходящего потока данных (от станции к пользователю) - рисунок 14.19 [31].

Рисунок 14.19 - Пример ADSL с частотным уплотнением и сплиттером

Технология FDD позволяет расширить используемую полосу частот приблизительно до 1 МГц. В некоторых вариантах ADSL используется технология подавления эхо-сигналов, что позволяет еще лучше использовать доступный спектр частот, перекрывая часть диапазона, занятого нисходящим потоком данных, передачей данных в восходящем направлении.

Одно из главных преимуществ технологии ADSL по сравнению с аналоговыми модемами и протоколами ISDN HDSL и SHDSL – то, что поддержка голоса никак не отражается на параллельной передаче данных по двум быстрым каналам. Это связано с тем, что ADSL основана на принципах разделения частот, благодаря чему голосовой канал надежно отделяется от двух других каналов передачи данных [32].

Оборудование ADSL, размещенное на АТС, и абонентский ADSL-модем, подключаемые к обоим концам телефонной линии, образуют три группы каналов (три поддиапазона) передачи данных и телефонии [32]:

- высокоскоростную из сети в компьютер (скорость – от 32 Кбит/с до 8 Мбит/с);

- скоростную от компьютера в сеть (скорость – от 32 Кбит/с до 1 Мбит/с)

- простой канал телефонной связи, по которому передаются обычные телефонные разговоры.

Технология OFDM для ADSL ‑ DMТ (Discrete Multi Tone)

В рамках скоростных каналов для передачи данных используется устойчивая к узкополосным помехам и шумам технология DMT, в соответствии с которой вся свободная от телефонии полоса (от 26 кГц до 1,1 MГц для базовой технологии и до 2,2 МГц для ADSL2+) делится на элементарные каналы шириной немногим более 4 кГц, и разные несущие одновременно переносят различные части передаваемых данных. Величина максимально достижимой скорости передачи/приема данных при этом, повторимся, зависит от длины и качества телефонной линии [32].

Основные положения метода модуляции DMT (Discrete Multi Tone) были сформулированы и запатентованы специалистами Amati Communications еще в начале 1990-х гг. С 1993 г. технология стандартизирована ANSI в качестве метода линейного кодирования для систем передачи данных. Сложности технической реализации этого метода на первоначальном этапе развития DSL-технологий ограничивали область его возможного применения. Однако на настоящий момент DMT является одной из основных схем модуляции для технологий ADSL и VDSL [32].

Рисунок 14.20 - Технологии ADSL/ADSL2+: использование частотного диапазона линии

Технология DМТ использует не одну, а группу частот несущих колебаний. Весь расчетный частотный диапазон линии делится на несколько участков шириной по 4,3125 кГц. Каждый из них используется для организации независимого канала передачи данных. На этапе проверки качества линии передатчик, исходя из уровня помех в частотном диапазоне участка, для каждого из этих каналов выбирает подходящую модуляционную схему. На «чистых» каналах с малым уровнем шумов могут быть использованы «продвинутые» методы модуляции с высоким уровнем, например QAM-64, на более зашумленных участках – типа QPSK. Такой принцип регулирования скорости обмена позволяет наиболее точно согласовывать параметры модулированного сигнала с параметрами линии, по которой он будет передаваться. При передаче данных информация распределяется между независимыми каналами пропорционально их пропускной способности, приемнику остается выполнить операцию демультиплексирования и восстановить исходный информационный поток [32].

Скорости нисходящего и восходящего потоков данных в ADSL изменяются и зависят от длины абонентской телефонной линии и уровня шумов. В основном на ADSL оказывают влияние помехи на дальнем конце линии (FEXT), в то время как ISDN-BA и HDSL обычно имеют ограничения из-за помех на ближнем конце линии (NEXT). Именно то, что основные ограничения касаются помех на дальнем конце линии, позволяет достигнуть скорости передачи для нисходящего потока данных в 2 Мбит/с по большинству абонентских телефонных линий. Полоса частот, используемая для восходящего потока данных, по технологии значительно уже, поэтому обычно скорость передачи восходящего потока данных достигает нескольких сотен Кбит/с [32].

Трансивер ADSL может выступать не только средством битовой передачи, но и средством передачи ячеек АТМ, т.е. иметь мультисервисные возможности [32].

14.5.2.3. Цифровая абонентская линия с адаптацией скорости соединения R-ADSL

Технология цифровой абонентской линии с адаптацией скорости соединения R-ADSL (Rate-Adaptive Digital Subscriber Line) обеспечивает такую же скорость передачи данных, что и технология ADSL, но при этом позволяет адаптировать скорость передачи к протяженности и состоянию используемой витой пары проводов. При использовании технологии R-ADSL соединение на разных телефонных линиях будет иметь разную скорость передачи данных. Скорость передачи данных может выбираться при синхронизации линии, во время соединения или по сигналу, поступающему от станции [33].

Технология ADSL2+

Требования к технологии ADSL2+ определены в Рекомендациях G.992.5 ITU-T, принятой в феврале 2003 г. Увеличенная полоса используемых частот (до 22 МГц) позволит передавать данные со скоростью до 25 Мбит/с на расстояние около 1 км.

Цифровая абонентская линия G.Lite (ADSL.Lite)

G.Lite (ADSL.Lite) представляет собой более дешёвый и простой в установке вариант технологии ADSL, обеспечивающий скорость «нисходящего» потока данных до 1,5 Мбит/с и скорость «восходящего» потока данных до 512 Кбит/с или по 256 Кбит/с в обоих направлениях на расстояние до 3,5 км [33].

14.5.2.4. Сверхвысокоскоростная цифровая абонентская линия VDSL

Технология сверхвысокоскоростной цифровой абонентской линии VDSL (Very High Bit-Rate Digital Subscriber Line) является наиболее «быстрой» ассиметричной технологией xDSL. Она обеспечивает скорость передачи данных «нисходящего» потока в пределах от 13 до 52 Мбит/с, а скорость передачи данных «восходящего» потока в пределах от 1,5 до 2,3 Мбит/с, причем по одной витой паре телефонных проводов. В симметричном режиме поддерживаются скорости до 26 Мбит/с. Технология VDSL может рассматриваться как экономически эффективная альтернатива прокладыванию волоконно-оптического кабеля до конечного пользователя. Однако, максимальное расстояние передачи данных для этой технологии составляет от 300 м до 1300 м. То есть, либо длина абонентской линии не должна превышать данного значения, либо оптико-волоконный кабель должен быть подведен поближе к пользователю (например, заведен в здание, в котором находится много потенциальных пользователей). Технология VDSL может использоваться с теми же целями, что и ADSL; кроме того, она может использоваться для передачи сигналов телевидения высокой четкости (HDTV), видео по запросу и т.п. [33]

Технология VDSL является результатом естественной эволюции технологии ADSL в сторону увеличения скорости передачи данных и использования еще более широкой полосы частот. Данная технология может быть успешно внедрена путем сокращения эффективной длины абонентской линии за счет расширения сети волоконно-оптических линий и их внедрения в существующую сеть доступа. Концепция VDSL показана на рисунке 14.21 [31].

Рисунок 14.21 - Концепция технологии VDSL

14.5.2.5. Высокоскоростная цифровая абонентская линия HDSL

Стандарт HDSL (High Bit-Rate Digital Subscriber Line - высокоскоростная цифровая абонентская линия) берет свое начало от стандарта ISDN-BA. Оригинальная концепция HDSL была разработана в Северной Америке, разработчики DSL пытались повысить тактовую частоту ISDN, чтобы увидеть, насколько далеко и насколько быстро могут работать системы высокоскоростной передачи данных. Следует также учитывать, что одновременно также очень быстро развивалась технология DSP (технология цифровой обработки сигнала). Исследовательская работа привела к удивительному открытию. Оказывается, даже простая 4-уровневая модуляция PAM (амплитудно-импульсная модуляция) позволяет работать на скоростях до 800 Кбит/с при вполне приемлемой длине линии (в США данная зона называется Carrier Serving Area — зона обслуживания оператора). Была снова использована технология компенсации эхо-сигналов, которая позволила организовать двустороннюю передачу данных со скоростью 784 Кбит/с по одной паре проводов, отвечая при этом всем требованиям по расстоянию передачи и запасу по помехоустойчивости, которые должны быть выполнены для предоставления необходимого качества обслуживания [31].

Технология HDSL предусматривает организацию симметричной линии передачи данных, то есть скорости передачи данных от пользователя в сеть и из сети к пользователю равны. Благодаря скорости передачи (1,544 Мбит/с по двум парам проводов и 2,048 Мбит/с по трем парам проводов) телекоммуникационные компании используют технологию HDSL в качестве альтернативы линиям T1/E1 (линии Т1 используются в Северной Америке и обеспечивают скорость передачи данных 1,544 Мбит/с, а линии Е1 используются в Европе и обеспечивают скорость передачи данных 2,048 Мбит/с). Хотя расстояние, на которое система HDSL передает данные (порядка 3,5 — 4,5 км), меньше, чем при использовании технологии ADSL, для недорогого, но эффективного, увеличения длины линии HDSL телефонные компании устанавливают специальные повторители. Использование для организации линии HDSL двух или трех витых пар телефонных проводов делает эту систему идеальным решением для соединения АТС, серверов Интернет, локальных сетей и т.п.

Технология HDSL представляет собой систему двухсторонней симметричной передачи данных (смотрите рисунок 14.22), которая позволяет передавать данные со скоростью 1,544 Мбит/с или 2,048 Мбит/с по нескольким парам проводов сети доступа. Рекомендованы два линейных кода: амплитудно-импульсная модуляция 2B1Q и амплитудно-фазовая модуляция без несущей (CAP). Модуляция CAP используется для передачи со скоростью 2,048 Мбит/с, в то время как для модуляции 2B1Q определены два различных цикла [31].

Рисунок 14.22 - Концепция высокоскоростной цифровой абонентской линии HDSL

Стандарт 2B1Q для скорости 2,048 Мбит/с обеспечивает как двустороннюю передачу по одной паре проводов, так и параллельную передачу по двум или трем парам проводов. Это позволяет распределить данные по нескольким парам и снизить скорость передачи символов для увеличения предельной длины линии, по которой может осуществляться передача. Стандарт CAP позволяет передавать данные только по одной или двум парам проводов, а стандарт 2B1Q для скорости 1,544 Мбит/с предназначен только для двух линий [31].

Рисунок 14.23 - Эволюция систем передачи HDSL

Всем опытом эксплуатации HDSL доказал свои высокие эксплуатационные характеристики. В подавляющем большинстве случаев монтаж HDSL оборудования проводится без дополнительного подбора пар или кондиционирования линии. Благодаря этому сегодня большая часть линий Е1 подключена с применением HDSL оборудования. Более того, сам факт появления технологии, которая обеспечила возможность экономичных решений по организации цифровых подключений абонентов, привел к тому, что число таких подключений стало стремительно расти. Иными словами, именно появление HDSL стало своеобразным катализатором развития цифровых сетей [35].

14.5.2.6. Однолинейная цифровая абонентская линия SDSL

Технология однолинейной цифровой абонентской линии SDSL (Single Line Digital Subscriber Line) также как и технология HDSL, обеспечивает симметричную передачу данных со скоростями, соответствующими скоростям линии Т1/Е1, но при этом технология SDSL имеет два важных отличия:

- используется только одна витая пара проводов,

- максимальное расстояние передачи ограничено 3 км.

В пределах этого расстояния технология SDSL обеспечивает, например, работу системы организации видеоконференций, когда требуется поддерживать одинаковые потоки передачи данных в оба направления. В определенном смысле технология SDSL является предшественником технологии HDSL2 [33].

Симметричная или двухпроводная линия DSL (SDSL) является симметричной и базируется на более ранней технологии HDSL, но имеет целый ряд усовершенствований, которые позволяют более гибко организовать передачу данных по одной паре проводов. Технология SDSL может найти применение как в сфере бизнеса, так и в частном секторе, что создает ей очень высокую потенциальную ценность [31].

Стоит заметить, что некоторые современные производители узкополосного коммутационного оборудования рассматривают данную технологию как один из способов продления существования оборудования данного типа. Технология SDSL может использоваться в виде встроенных линейных карт, способных передавать 2 канала типа В коммутируемого трафика через коммутационную сеть. Любые другие возможности высокоскоростного доступа выводятся из коммутируемой сети в некоммутируемую сеть высокоскоростной передачи данных IP или ATM. Кроме того, технология SDSL совместима с архитектурой мультиплексора доступа цифровой абонентской линии (DSLAM) и может использоваться в качестве дополнения к таким технологиям доступа как HDSL, ADSL и VDSL [31].

14.5.2.7. Высокоскоростная цифровая абонентская линия HDSL 2

Новая технология, появившаяся в результате огромной трехлетней работы, получила название HDSL2 (нужно отметить, что работа над ее стандартизацией ввиду некоторых разногласий между основными производителями пока не окончена и стандарт существует в виде рабочей версии Т1.418-2000). Изначально в качестве основы для реализации HDSL2 рассматривались симметричная передача с эхоподавлением (SEC) и частотное мультиплексирование (FDM), но обе были отклонены из-за присущих им недостатков. Первая имеет серьезные ограничения в условиях помех на ближнем конце, что делает ее неприменимой для массового развертывания. Вторая, хотя и свободна от недостатков первой, но требует использования более широкого спектра и не обеспечивает требований по взаимному влиянию с системами передачи других технологий [35].

В результате, в качестве основы была принята система передачи с перекрывающимся, но несимметричным распределением спектральной плотности сигнала, передаваемого в различных направлениях, использующая 16-уровневую модуляцию PAM (Pulse Amplitude Modulation). Выбранный способ модуляции PAM-16 обеспечивает передачу трех бит полезной информации и дополнительного бита (кодирование для защиты от ошибок) в одном символе. Сама по себе модуляция PAM не несет в себе ничего нового. Хорошо известная 2B1Q — это тоже модуляция PAM, но четырехуровневая. Использование решетчатых (Trellis) кодов, которые за счет введения избыточности передаваемых данных позволили снизить вероятность ошибок, дало выигрыш в 5 Дб. Результирующая система получила название TC-PAM (Trellis coded PAM). При декодировании в приемнике используется весьма эффективный алгоритм Витерби (Viterbi). Дополнительный выигрыш получен за счет применения прекодирования Томлинсона (Tomlinson) — искажении сигнала в передатчике на основе знания импульсной характеристики канала. Суммарный выигрыш за счет использования такой достаточно сложной технологии кодирования сигнала составляет до 30% по сравнению с ранее используемыми HDSL/SDSL системами [35].

Рисунок 14.24 - Спектральная плотность сигнала G.shdsl

Но все-таки, ключевым элементом успеха новой технологии является идея несимметричного распределение спектра, получившее название OPTIS (Overlapped PAM Transmission with Interlocking Spectra) и послужившее основой HDSL2 и, впоследствии, G.shdsl. При выборе распределения спектральной плотности для OPTIS решалось одновременно несколько задач (рис. 14.24). В первой области диапазона частот (0-200 кГц), где переходное влияние минимально, спектральные плотности сигналов, передаваемых в обе стороны одинаковы. Во втором диапазоне частот (200-250 кГц), спектральная плотность сигнала от LTU (оборудования на узле связи) к NTU (абонентскому оборудованию) уменьшена, чтобы снизить его влияние на сигнал в обратном направлении в этой области частот. Благодаря этому переходные влияния на ближнем конце в обоих диапазонах частот оказываются одинаковыми. В свою очередь мощность сигнала от NTU к LTU во втором диапазоне частот уменьшена, что даёт дальнейшее улучшение отношения сигнал/шум в этой области частот. Следует отметить, что это уменьшение не ухудшает отношения сигнал/шум на входе NTU по двум причинам:

- во-первых, полоса частот сигнала от LTU к NTU увеличена по сравнению с полосой частот сигнала в обратном направлении,

- во-вторых, абонентские модемы NTU пространственно разнесены, что также уменьшает уровень переходной помехи.

В третьем диапазоне частот спектральная плотность сигнала от LTU к NTU максимальна, поскольку сигнал в обратном направлении в этой области почти отсутствует, и отношение сигнал/шум для сигнала на входе NTU оказывается высоким. Выбранная форма спектра является оптимальной не только в случае, когда в кабеле работают только системы HDSL2. Она будет оптимальна и при работе с ADSL, поскольку сигнал HDSL2 от NTU к LTU выше частоты 250 кГц, где сосредоточена основная мощность составляющих нисходящего потока ADSL, практически подавлен. Предварительные расчёты показали, что помехи от системы HDSL2 в нисходящем тракте системы ADSL (от LTU к NTU) меньше помех от системы HDSL, работающей по двум парам, и существенно меньше помех от системы HDSL, использующей код 2B1Q и работающей по одной паре на полной скорости [35].

14.5.2.8. Сверхбыстродействующие цифровые абонентские линии SHDSL и G.shdsl

Технологии сверхбыстродействующих цифровых абонентских линий SHDSL (англ. Single-pair High-speed DSL) и G.shdsl утвержденные ITU G.991.2 — одна из технологий цифровой абонентской линии, обеспечивает симметричную дуплексную передачу данных по паре медных проводников. Основные идеи взяты из технологии HDSL2.

По стандарту технология SHDSL обеспечивает симметричную дуплексную передачу данных со скоростями от 192 кбит/с до 2.3 Mбит/c (с шагом в 8 Кбит/с) по одной паре проводов, соответственно от 384 кбит/c до 4,6 Mбит/c по двум парам.

При использовании методов кодирования TC-PAM 128, стало возможным повысить скорость передачи до 15,2 Мбит/сек по одной паре и до 30,4 Мбит/сек по двум парам соответственно.

В 1998 году в ITU-T началась работа над всемирным стандартом G.shdsl (стандарт G.991.2 утвержден в феврале 2001 г.), европейской версией этого стандарта занимается и ETSI (сейчас он оформлен в виде спецификации TS 101524) [35].

В основу технологии G.shdsl были положены основные идеи HDSL2, получившие дальнейшее развитие. Была поставлена задача, используя способы линейного кодирования и технологию модуляции HDSL2, снизить взаимное влияние на соседние линии ADSL при скоростях передачи выше 784 Кбит/с [35].

Поскольку новая система использует более эффективный линейный код по сравнению с 2B1Q, то при любой скорости сигнал G.shdsl занимает более узкую полосу частот, чем соответствующий той же скорости сигнал 2B1Q. Поэтому помехи от систем G.shdsl на другие системы xDSL имеют меньшую мощность по сравнению с помехами, создаваемыми HDSL типа 2B1Q. Более того, спектральная плотность сигнала G.shdsl имеет такую форму, которая обеспечивает его почти идеальную спектральную совместимость с сигналами ADSL [35].

Есть и другие достоинства G.shdsl. По сравнению с двух парными вариантами, однопарные варианты обеспечивают существенный выигрыш по аппаратным затратам и, соответственно, надежности изделия. Ресурс снижения стоимости составляет до 30% для модемов и до 40% для регенераторов — ведь каждая из пар требует приемопередатчика HDSL, линейных цепей, элементов защиты и т.п. [35].

Таблица 14.8 – Сравнительный анализ характеристик технологий симметричного доступа НDSL и G.shdsl по данным работы [60]

Система передачи

Тип модуляции

Скорость передачи, Кбит/с

Количество пар (d = 0,4 мм)

Длина линии, км

HDSL

2B1Q

784

3

3

HDSL

2B1Q/CAP

1168

2

2,5

HDSL

2B1Q/CAP

2320

1

2

G.SHDSL

TC-PAM

2320

1

2

G.SHDSL

TC-PAM

192

1

6

G.SHDSL

TC-PAM

4624

2

2

G.SHDSL

TC-PAM

384

2

6

В целях поддержки клиентов различного уровня, в G.shdsl предусмотрена возможность выбора скорости в диапазоне 192 Кбит/с — 2320 Кбит/с с шагом 8 Кбит/с. Уменьшая скорость, можно добиться увеличения дальности в тех случаях, когда установка регенераторов невозможна. Так, если при максимальной скорости рабочая дальность составляет около 2 км (для провода 0,4 мм), то при минимальной — свыше 6 км (рис. 14.25).

Рисунок 14.25 - Возможности систем передачи G.shdsl

В технологии G.shdsl, так же предусмотрена возможность использования для передачи данных одновременно двух пар, что позволяет увеличить предельную скорость передачи до 4624 Кбит/с. Но, главное, можно удвоить максимальную скорость, которую удается получить на реальном кабеле, по которому подключен абонент [35].

Для обеспечения взаимной совместимости оборудования различных производителей в стандарт G.shdsl был инкорпорирован стандарт G.hsbis (G.844.1), описывающий процедуру инициализации соединения. Предусмотрено два варианта процедуры:

1. оборудование LTU (установленное на АТС) диктует параметры соединения NTU (оборудованию клиента),

2. оба устройства «договариваются» о скорости передачи с учетом состояния линии.

Учитывая неизвестные начальные условия, при обмене данными во время инициализации для гарантированного установления соединения применяется низкая скорость передачи и один из классических методов модуляции DPSK.

Кроме установки скорости, стандарт G.shdsl описывает и порядок выбора протокола в процессе установки соединения. Чтобы обеспечить совместимость со всеми используемыми на сегодня сервисами. G.shdsl модем должен реализовать возможность работы с такими протоколами, как E1, ATM, IP, PCM, ISDN. Для обеспечения гарантированной работоспособности приложений реального времени, стандартом G.shdsl ограничена максимальная задержка данных в канале передачи (не более 500 мс). Наиболее используемыми приложениями этого вида для G.shdsl являются передача голоса VoDSL во всех ее разновидностях (PCM — обычный цифровой канал телефонии, VoIP — голос через IP и VoATM- голос через ATM) и видеоконференцсвязь [35].

За счет оптимального выбора протокола во время инициализации в G.shdsl удается дополнительно снизить задержки в канале передачи. Например, для IP трафика устанавливается соответствующий протокол, что позволяет отказаться от передачи избыточной информации, по сравнению с IP пакетами, инкапсулированными в ATM ячейки. А для передачи цифровых телефонных каналов в формате ИКМ непосредственно выделяется часть полосы DSL канала [35].

Стоит отметить, что упомянутые выше передача голоса и видеоконференцсвязь требуют передачи симметричных потоков данных в обе стороны. Симметричная передача необходима и для подключения локальных сетей корпоративных пользователей, которые используют удаленный доступ к серверам с информацией. Поэтому, в отличие от других высокоскоростных технологий (ADSL и VDSL), G.shdsl как нельзя лучше подходит для организации последней мили. Так, при максимальной скорости она обеспечивает передачу 36 стандартных голосовых каналов. Тогда как ADSL, где ограничивающим фактором является низкая скорость передачи от абонента к сети (640 Кбит/с), позволяет организовать лишь 9 голосовых каналов, не оставляя места для передачи данных [35].

Еще одна задача, которая успешно решена в G.shdsl — снижение энергопотребления. Поскольку для дистанционного питания используется одна пара, важность этой задачи трудно переоценить. Еще одна положительная сторона — снижение рассеиваемой мощности — открывает путь к созданию высоко интегрированного станционного оборудования [35].

14.5.2.9. Цифровой абонентский доступ по линии электропередачи PCL

Для линий связи PDSL (Power Digital Subscriber Line — цифровой абонентский доступ по линии электропередачи) так же применим термин PLC (англ. Power line communication) — термин, описывающий несколько разных систем для использования линий электропередачи (ЛЭП) для передачи голосовой информации или данных. Сеть может передавать голос и данные, накладывая аналоговый сигнал поверх стандартного переменного тока частотой 50 Гц или 60 Гц. PLC включает BPL (англ. Broadband over Power Lines — широкополосная передача через линии электропередачи), обеспечивающий передачу данных со скоростью более 1 Мбит/с, и NPL (англ. Narrowband over Power Lines — узкополосная передача через линии электропередачи) со значительно меньшими скоростями передачи данных [36, 37].

Технология PLC базируется на использовании силовых электросетей для высокоскоростного информационного обмена. Эксперименты по передаче данных по электросети велись достаточно давно, но низкая скорость передачи и слабая помехозащищенность были наиболее узким местом данной технологии. Но появление более мощных DSP-процессоров (цифровые сигнальные процессоры) дали возможность использовать более сложные способы модуляции сигнала, такие как OFDM-модуляция, что позволило значительно продвинуться вперед в реализации технологии PLC [36, 37].

В 2000 году несколько крупных лидеров на рынке телекоммуникаций объединились в HomePlug Powerline Alliance с целью совместного проведения научных исследований и практических испытаний, а также принятия единого стандарта на передачу данных по системам электропитания. Прототипом PowerLine является технология PowerPacket фирмы Intellon, положенная в основу для создания единого стандарта HomePlug1.0 (принят альянсом HomePlug 26 июня 2001 года), в котором определена скорость передачи данных до 14 Мбит/с [36, 37].

Основой технологии PowerLine является использование частотного разделения сигнала, при котором высокоскоростной поток данных разбирается на несколько относительно низкоскоростных потоков, каждый из которых передается на отдельной поднесущей частоте с последующим их объединением в один сигнал. Реально в технологии PowerLine используются 84 поднесущие частоты в диапазоне 4—21 МГц [36, 37].

При передаче сигналов по бытовой электросети могут возникать большие затухания в передающей функции на определенных частотах, что может привести к потере данных. В технологии PowerLine предусмотрен специальный метод решения этой проблемы — динамическое включение и выключение передачи сигнала. Суть данного метода заключается в том, что устройство осуществляет постоянный мониторинг канала передачи с целью выявления участка спектра с превышением определенного порогового значения затухания. В случае обнаружения данного факта, использование этих частот на время прекращается до восстановления нормального значения затухания [36, 37].

Существует также проблема возникновения импульсных помех (до 1 мкс), источниками которых могут быть галогенные лампы, а также включение и выключение мощных бытовых электроприборов, оборудованных электрическими двигателями [36, 37].

Преимущества [36, 37].

- Простота использования.

- Не требуется прокладка отдельного кабеля.

Недостатки [36, 37].

- Крайне уязвима со стороны радиопередающих устройств коротковолнового диапазона (включая легальные радиовещательные и радиолюбительские радиостанции).

- Пропускная способность сети по электропроводке делится между всеми ее участниками.

- Требуются специальные совместимые сетевые фильтры и ИБП. Через обычные не работает.

- Нарушается радиоприём, особенно на средних и коротких волнах.

- На качество связи оказывают отрицательное влияние энергосберегающие лампы, импульсные блоки питания, зарядные устройства, выключатели освещения и т.п. и т.д.(снижение скорости около от 5 до 50%).

- На качество и скорость связи оказывает отрицательное влияние исполнения/топология/качество электропроводки, тип/режим/мощность бытовых электроприборов и устройств, наличие скруток (снижение скорости до полного пропадания).

- Монтаж требует работы под напряжением.

- Поскольку стандарт пересекается с коротковолновым диапазоном частот, то создаются взаимные помехи для связной и радиовещательной аппаратуры. Повсеместное распространение стандарта делает невозможным прием коротковолновых передач на расстоянии от сотен метров до километров от зданий и вблизи ЛЭП, где применяется данная технология.

- В связи с вышеперечисленным, а также широкой доступностью помехоустойчивых Ethernet и DSL технологий, PLC не может серьезно рассматриваться как техническое решение для Интернет-доступа из-за высокой уязвимости к помехам и их излучениям.

14.5.3. Стандартные конфигурации проводного широкополосного доступа

При решении проблемы широкополосного доступа пользователей с помощью технологий xDSL, кабельных модемов и беспроводных технологий, провайдеры услуг Интернет (ISP) и сетевые операторы ищут оптимальные способы конфигурации доступа, которые позволили бы минимизировать затраты, связанные с модернизацией существующих инфраструктур абонентского доступа, а также упростить и ускорить процесс предоставления новых услуг [38].

Существует целый ряд альтернативных способов конфигурации доступа, важнейшими из которых являются следующие [38]:

- метод доступа с использованием статической адресации IP;

- метод доступа с использованием динамической адресации IP на основе протокола DHCP (Dynamic Host Control Protocol);

- метод доступа с использованием протокола РРР (Point-to-Point Protocol, точка-точка) «поверх» («over») АТМ (РРРоА);

- метод доступа с использованием протокола PPP «поверх» Ethernet (РРРоE).

Хотя каждый из этих способов может потенциально применяться в определённых приложениях, метод РРРоE наиболее полно удовлетворяет требованиям пользователей, позволяя провайдерам услуг использовать существующее аппаратное и программное обеспечение, включая системы обеспечения доступа и оплаты услуг связи.

Рассмотрим более подробно перечисленные способы конфигурации доступа к сетевым услугам.

1. Статическая адресация IP является наиболее прямым и, вместе с тем, наиболее дорогим способом, поскольку каждому абоненту присваивается индивидуальный IP-адрес. Очевидно, что этот способ имеет недостаточную масштабируемость; его применение целесообразно в локальной сети, где количество компьютеров мало и не предполагается их дальнейшее увеличение. Пользователи такой сети имеют доступ практически к любым сетевым услугам, поскольку эта архитектура доступа не поддерживает процедуры аутентификации пользователя, т.е. адресации невозможны. Поскольку каждая статическая IP адресация требует жёсткой конфигурации для каждого абонента, возможные модификации сети затруднены, а вся архитектура требует существенных затрат на инсталлирование и неудобна при смене конфигурации сети. Однако для пользователей из сферы бизнеса, имеющих достаточные финансовые возможности, наличие постоянного доступа в Интернет является хорошим вариантом [38].

2. Протокол динамического распределения адресов DHCP, выгодно отличается от статической адресации прежде всего своей гибкостью, поскольку она опирается на использование серверов DHCP, которые автоматически приписывают IP адреса и конфигурируют доступ абонентов к сети прозрачно для пользователей. Поэтому предоставление широкополосных услуг с помощью DHCP оказывается более простым, чем в случае применения статической адресации. Кроме того, DHCP позволяет выполнять централизованно изменения в сети [38].

Способ DHCP лучше подходит для крупной сети. Когда абонент, использующий протокол DHCP, выходит в сеть, сервер DHCP выдаёт ему разрешение на использование адресов IP в течение определённого времени, называемого временем аренды (причем это время может быть и неограниченным) [38].

Однако подобно статической адресации, способ DHCP неспособен аутентифицировать конечных пользователей и поэтому при этом способе возможно применение только метода постоянной оплаты пользователем сетевых услуг. Способ DHCP в сочетании с дополнительным ПО аутентификации является чрезвычайно сложным, поскольку он требует организации интерфейсов в реальном масштабе времени между сервером DHCP, сервером аутентификации пользователей RADIUS (Remote Authentication Dial In User Service), сервером широкополосного доступа BRAS (Broadband Remote Access Server) и сервером биллинга (т.е., расчёта оплаты услуг связи). Кроме трудности исполнения, этот способ требует также выполнения дополнительных эксплуатационных и административных условий, поскольку необходимо тесно интегрировать множество различных приложений, чтобы сделать процедуру аутентификации успешной. Но даже в случае нормальной работы вышеуказанного способа все равно остаётся возможность несанкционированного доступа в сеть до момента начала процедуры аутентификации [38].

Рассмотренные выше механизмы конфигурирования конечных пользователей на основе статических IP и протоколе DHCP требуют подготовительных операций и ограничены возможностью установления соединения одновременно только с одним провайдером услуг [38].

3. Протокол «точка-точка» РРР. Наибольшее применение уже более десяти лет нашла архитектура, основанная на применении протокола PPP (Point-to-Point Protocol, точка-точка), требующего подтверждения пользователем его пароля перед началом процесса конфигурирования сети. Таким образом, органичной особенностью этого способа является встроенная процедура аутентификации, позволяющая корректно отслеживать время предоставления и оплату сетевых услуг [38]. Эта архитектура уже более 10 лет успешно используется десятками миллионов пользователей в качестве основной в системе коммутируемого абонентского соединения (dial-up networking) через телефонную сеть общего пользования (ТФОП). Благодаря встроенным универсальным механизмам идентификации пользователя и расчёта стоимости предоставляемых услуг (известным также под названием функций ААА - Authentication, Authorization, Accounting) не требуется изменений существующих серверов баз данных при добавлении новых услуг (в том числе и услуг, предоставляемых технологиями xDSL). Иными словами, архитектура РРР позволяет провайдерам услуг Интернет ISP защитить прошлые инвестиции уже при создании новых широкополосных услуг с целью привлечения новых пользователей на отличающемся сильной конкуренцией рынке услуг связи [38].

Протокол PPP может выполняться двумя способами [38]:

- PPP «поверх» («over») АТМ (PPРoA);

- PPP «поверх» («over») Ethernet (PРPoE).

3.1 PPРoA. Ключевое преимущество РPPoA — это способность обеспечения заданного качества услуг QoS (и в первую очередь максимально допустимого времени задержки и гарантированной пропускной способности для всего соединения). Однако этот метод требует применения элементов технологии ATM в оборудовании пользователя, что увеличивает цену последнего и сложность организации широкополосных услуг, поскольку интерфейсные карты АТМ достаточно сложны и дороги. Однако даже при наличии такой совместимости требуются ещё дополнительные драйверы конфигурирования. Кроме того, для полного использования преимуществ архитектуры РPPoA необходимы коммутируемые виртуальные каналы SVCs, которые пока ещё не получили широкого распространения на сети. И, наконец, программное обеспечение РPPoA предусмотрено далеко не для всех платформ: оно не поддерживается домашними LAN, а также кабельным и беспроводным доступом [38].

3.2 РРРоЕ. Основное достоинство метода РРРоЕ заключается в использовании двух широко распространённых стандартизованных сетевых структур, которыми являются стек протоколов РРР и локальная сеть Ethernet, что требует минимальных изменений существующей инфраструктуры сети доступа (оборудования, операционных систем и т.д.) определяет минимальные затраты и минимальное время развёртывания новых широкополосных сетевых услуг. Указанные факторы важны как для операторов связи и провайдеров сетевых услуг, так и для пользователей. Для последних особенно важно то, что процедура доступа к новым сетевым услугам остаётся для них практически той же, что и при прежнем доступе, например, к Интернет с помощью аналоговых модемов ТфОП [38].

Ключевым достоинством способа РРРоЕ является упрощение многопользовательской инсталляции линий доступа xDSL: протокол РРРоЕ идеально подходит для абонентов представляющих собой локальные сети, а также для малых и домашних офисов. Совместно используемая несколькими пользователями сеть Ethernet при способе РРРоЕ очень похожа на одновременный доступ нескольких индивидуальных пользователей коммутируемой ТФОП к услугам Интернет с помощью аналоговых модемов (рис. 14.26).

Как видно из рис. 14.26, при способе PPPoE для организации одновременного широкополосного доступа нескольких пользователей локальной сети Ethernet принципиально достаточно одного постоянного виртуального канала РVС [38].

Рисунок 14.26 - Аналогия метода PPPоЕ с одновременным доступом нескольких пользователей аналоговых модемов

Для сравнения на рис. 14.27 представлена традиционная инфраструктура передачи данных с использованием аналоговых модемов ТФОП [38].

Рисунок 14.27 - Традиционная инфраструктура передачи данных с помощью аналогового модема ТФОП

Сравнение рис. 14.26 и рис. 14.27 показывает ограниченность необходимых изменений сети доступа при переходе от традиционного доступа (рис. 14.27) к широкополосному с использованием метода PPPoE, который обеспечивает управление доступом и функции выставления счёта за предоставленные услуги связи способом, используемым в стеке протокола РРР для коммутируемых соединений ТФОП и ISDN. Причём управление доступом, выбор типа услуги и функции биллинга выполняются для каждого пользователя, а не объекта в целом [38].

По сравнению с PPРoA, инфраструктура PPРoE проста: после установления соединения циклы РРР транспортируются внутри циклов Ethernet вместе со специальным служебным заголовком, обеспечивающим мультиплексирование сеансов связи [38].

Важно также отметить, что метод РРРоЕ не зависит от типа технологии доступа [38]. Хотя выше упоминались лишь технологии доступа типа xDSL, способ РРРоЕ с таким же успехом применим к таким методам доступа, как кабельные модемы, системы беспроводного доступа и комбинированные медно-оптические системы типа FTTC («Оптическое волокно до шкафа») и др.

У метода РРРоЕ есть ещё одно полезное свойство, которое предоставляет конечным пользователям функцию дополнительного выбора услуги. Она позволяет конечным пользователям изменять адресат сети по требованию (точно так же, как это можно делать в случае доступа с помощью традиционных аналоговых модемов) и даже иметь множество сеансов связи разными сетями связи одновременно из одного помещения через единственную линию доступа xDSL (рис. 14.28) [38].

Рисунок 14.28 - Динамический выбор услуги с помощью метода PPPoE

Следует особо обратить внимание на то, что опираясь на способ РРРоЕ и систему динамического выбора услуги и используя систему управления абонентским доступом можно практически обеспечить в одной сети доступа лучшие свойства выделенной и коммутируемой линий — высокую пропускную способность и «выделенность» соединения первой с гибкостью и низкой платой за услуги второй [35].

Однако протокол PPPoE не универсален и занимает лишь свою нишу во всём многообразии структур широкополосного доступа: будучи превосходным решением для малых локальных сетей типа Ethernet, он не может быть признан удовлетворительным, например, для сетей больших комплексов административных, университетских зданий и др., больших удалённых офисов и мультипротокольных сетей, требования которых к услугам широкополосного доступа очень многообразны [35].

Метод РPPoE требует также применения стороннего клиентского программного обеспечения. Этот недостаток является одновременно и сильной стороной этого метода, поскольку позволяет провайдерам услуг связи управлять предоставляемыми услугами и защищать их [35].