При построении топологии планируемой транспортной сети необходимо предусматривать необходимое резервирование сетевых элементов на аппаратном и сетевом уровне, резервирование трафика, увязать топологию сети с организацией ее управления и синхронизации, предусмотреть организацию соответствующих сетей доступа и их подключение к ЦПС [7].

Существует базовый набор стандартных топологий:

Топология "точка–точка". Сегмент сети, связывающий два узла A и B, или топология "точка–точка", является наиболее простым примером базовой топологии SDH сети (рисунок 10.5). Она может быть реализована с помощью терминальных мультиплексоров ТМ, как по схеме без резервирования канала приёма/передачи, так и по схеме со стопроцентным резервированием типа 1+1, использующей основной и резервный электрические или оптические агрегатные выходы (каналы приёма/передачи).

Рисунок 10.5. Топология "точка-точка", реализованная с использованием ТМ.

Рисунок 10.5. Топология "точка-точка", реализованная с использованием ТМ.

Топология "последовательная линейная цепь". Эта базовая топология используется тогда, когда интенсивность трафика в сети не так велика и существует необходимость ответвлений в ряде точек линии, где могут вводиться каналы доступа. Она может быть представлена либо в виде простой последовательной линейной цепи без резервирования, как на рисунок 10.6, либо более сложной цепью с резервированием типа 1+1, как на рисунке 10.7. Последний вариант топологии часто называют "упрощённым кольцом".

Рисунок 10.6. Топология "последовательная линейная цепь", реализованная на ТМ и TDM.

Рисунок 10.6. Топология "последовательная линейная цепь", реализованная на ТМ и TDM.

Рисунок 10.7. Топология "последовательная линейная цепь" типа "упрощённое кольцо" с защитой 1+1.

Рисунок 10.7. Топология "последовательная линейная цепь" типа "упрощённое кольцо" с защитой 1+1.

Топология "кольцо". Эта топология (рисунок 10.8) широко используется для построения SDH сетей первых двух уровней SDH иерархии (155 и 622 Мбит/с). Основное преимущество этой топологии – лёгкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар оптических каналов приёма/передачи: восток – запад, дающих возможность формирования двойного кольца со встречными потоками.

Рисунок 10.8. Топология "кольцо" c защитой 1+1

Рисунок 10.8. Топология "кольцо" c защитой 1+1

Архитектура сети SDH.

Архитектурные решения при проектировании сети SDH могут быть сформированы на базе использования рассмотренных выше элементарных топологий сети в качестве её отдельных сегментов. Например, радиально-кольцевая архитектура SDH сети фактически строится на базе использования двух базовых топологий: "кольцо" и "последовательная линейная цепь". Другое часто используемое в архитектуре сетей SDH решение – соединение типа "кольцо-кольцо". Кольца в этом соединении могут быть либо одинакового, либо разного уровней иерархии SDH.

Линейная архитектура для сетей большой протяженности. Для линейных сетей большой протяженности расстояние между терминальными мультиплексорами больше или много больше того расстояния, которое может быть рекомендовано с точки зрения максимально допустимого затухания волоконно-оптического кабеля. В этом случае на маршруте между ТМ (рисунок 10.8) должны быть установлены кроме мультиплексоров и проходного коммутатора ещё и регенераторы для восстановления затухающего оптического сигнала. Эту линейную архитектуру можно представить в виде последовательного соединения ряда секций, специфицированных в рекомендациях ITU-T G.957 и ITU-T G.958.

Блоки MUX и LT (рисунок 10.8) конструктивно образуют единый модуль, основой которого является мультиплексор (МТ). Упрощённая структура трактов и секций сети SDH приведена на рисунке 10.8.

Рисунок 10.8. Структура трактов и секций
Рисунок 10.8. Структура трактов и секций

Организация взаимодействия элементов транспортной сети, а также управления сетью достигается использованием определённых интерфейсов (рисунок 10.8)

SPI – физический интерфейс STM-N, точка подключения оптического волокна.

PI – физический интерфейс компонентных потоков в PDH, либо SDH, сюда же можно включать и неоктетные цифровые потоки, например, каналы цифрового ТВ, и так далее. Этот интерфейс может быть как электрическим, так и оптическим.

Т – интерфейс, предназначенный для передачи и приёма сигналов синхронизации.

Q – интерфейс сети управления, точка подключения соединительных линий для двухсторонней передачи информации от узлов управления.

F – интерфейс контроля. В эту точку подключается персональный компьютер (ПК), программное обеспечение которого позволяет контролировать состояние не только своей станции, но и станции своей сети [21].

В интерфейс Т включен сетевой элемент (СЭ), которым могут управлять или сигнал от первичного эталонного генератора (ПЭГ); или от ведомого задающего генератора (ВЗГ), или сигнал компонентного потока (КП), или линейный сигнал (ЛС). Кроме того, сигналы синхронизации могут быть поданы на сетевые элементы других систем. С выходов СЭ управляющие сигналы поступают в тракты передачи (Вых.2) и приёма (Вых.1).