Спектральная характеристика коэффициента затухания оптических волокон.

Затухание характеризует потери оптической мощности при распространении оптических сигналов в волокне.

На рис. 1.17 представлена эволюция спектральной характеристики коэффициента затухания оптических волокон [48].

На характеристиках, соответствующих 1975...1980 гг. четко просматривается резкое уменьшение затухания на длинах волн, лежащих в области трех окон прозрачности (850 нм, 1300 нм и 1550 нм). Технология производства оптических волокон совершенствуется, и к 1990 г. наблюдается сглаживание характеристики, по сравнению с более ранним периодом, а также яркого проявления пика поглощения на примесях ОН с максимумом при = 1380 нм.

Рис. 1.17. Эволюция спектральной зависимости собственных потерь.

На рис. 1.18 приведена спектральная характеристика коэффициента затухания типовых кварцевых одномодовых оптических волокон [48].

Данная характеристика имеет три ярко выраженных особенности:

  • общая тенденция уменьшения коэффициента затухания a с увеличением длины волны l, пропорционально 1/l4, что обусловлено потерями за счет Рэлеевского рассеяния;
  • увеличение затухания a в области спектра выше 1,6 мкм, вызванное потерями на изгиб и инфракрасным поглощением кварца;
  • локальные максимумы, связанные с гармониками резонанса поглощения примесей гидроксогруппы ОН.

Рис. 1.18. Типовая спектральная характеристика коэффициента затухания стандартного кварцевого одномодового оптического волокна.

Волновые диапазоны

Как видно из представленной на рис. 1.18 спектральной характеристики для передачи оптических сигналов может использоваться достаточно широкий участок спектра, соответствующий сравнительно малым значениям a. Его принято разбивать на более узкие участки – рабочие диапазоны, или окна прозрачности.

Первоначально основным фактором потерь в ОВ являлась несовершенная технология очистки кварца, поэтому под окнами прозрачности понимались области длин волн вблизи узких локальных минимумов в зависимости потерь от длины волны: 850 нм (первое), 1310 нм (второе). 1550 нм (третье).

Так, многомодовые оптические волокна предназначены для совместной работой ОСП в первом и втором окнах прозрачности.

В свою очередь, одномодовые оптические волокна также предназначены для передачи сигналов одномодовых ОСП, функционирующих во втором окне прозрачности, при этом коэффициент затухания волокон составляет 0,35…0,40 дБ/км. Однако самое низкое затухание – около 0,20 дБ – достигается в третьем окне прозрачности в области 1550 нм. Таким образом, исторически одномодовому режиму соответствуют второе и третье окна прозрачности.

С развитием технологии очистки кварца стала доступна вся область низких потерь от 1260 нм до 1675 нм. Кривая потерь выглядит гладкой (рис. 1.18), и локальные минимумы на ней слабо выражены.

В настоящее время выделяют 6 спектральных диапазонов для одномодовых оптических волокон (табл. 1.5) [34, 48].

Таблица 1.5.

2

O

Original (основной)

1260…1360 нм

E

Extended (расширенный)

1360…1460 нм

5

S

Short wavelength (коротковолновый )

1460…1530 нм

3

C

Conventional (стандартный)

1530…1565 нм

4

L

Long wavelength (длинноволновый)

1565…1625 нм

U

Ultra-long wavelength (сверхдлинный)

1625…1675 нм

Современные оптические сети, использующие технологии DWDM, активно используют диапазон C. Также постепенно осваивается четвертое окно – диапазон L. Намечается использование пятого окна – диапазон S. В результате в диапазоне длин волн 1260…1650 мкм обеспечивается полоса пропускания не менее 50 ТГц.

Составляющие потерь в оптических волокнах

В общем случае, потери в оптических волокнах складываются из собственных потерь в волоконных световодах aс и дополнительных потерь, т.н. кабельных aк, обусловленных скруткой, а также деформацией и изгибами световодов при наложении покрытий и защитных оболочек в процессе изготовления оптического кабеля (рис. 1.19).

Рис. 1.19. Некоторые составляющие затухания оптических волокон.

Собственные потери оптических волокон состоят из потерь поглощения aп и потерь рассеяния aр, а также потерь на поглощение, обусловленных присутствующими в световодах примесями aпр и потерь на поглощение в инфракрасной области aик [48]:

, дБ/км

(1.22)

где aс – собственные потери;

aк – кабельные потери;

aп – потери на поглощение;

aр – потери на рассеяние;

aпр – потери на поглощение, обусловленные примесями;

aк – кабельные потери;

aик – потери на поглощение в инфракрасной области.

Потери Рэлеевского рассеяния

Потери Рэлеевского рассеяния обусловлены тепловой флуктуацией показателя преломления и неоднородностями материала световода, расстояние между которыми меньше длины волны. Свет, попадая на такие неоднородности, рассеивается в разных направлениях, в результате часть его теряется в оболочке. Величина потерь на рассеяние aр, дБ/км, определяется по следующей формуле [48, 49]:

(1.23)

где kр – коэффициент Рэлеевского рассеяния, для кварца равный примерно (0,8 мкм4 . дБ)/км.

Потери на Рэлеевском рассеянии определяют нижний предел собственного затухания, соответствующий длине волны 1550 нм, и сильнее проявляются в области коротких длин волн.

Коэффициент Рэлеевского рассеяния зависит от режима тепловой обработки заготовки и уменьшается при снижении температуры вытяжки волокна. Таким образом, при уменьшении температуры вытяжки до 1800оС и скорости вытяжки до 1м/с потери в оптических волокнах с легированной GeO2 сердцевиной удалось уменьшить до 0,16 дБ/км и 0,29 дБ/км на длинах волн 1550 и 1310 нм, соответственно.

Дальнейшее уменьшение затухания может быть получено в оптических волокнах с так называемой депрессированной оболочкой. В световодах такого типа потери aр снижаются за счет уменьшения степени легирования сердцевины. Также уменьшаются потери, возникающие из-за дефектов, появляющихся при вытяжке волокна, т.к. сердцевина и оболочка лучше согласованы по вязкости.

Потери на поглощение

Потери на поглощение состоят как из собственных потерь в кварцевом стекле (ультрафиолетовое и инфракрасное поглощение) aп, так и из потерь, связанных с поглощением на примесях aпр.

Примесные центры, в зависимости от типа примеси, поглощают свет на определенных (присущих данной примеси) длинах волн и рассеивают поглощенную световую энергию в виде джоулева тепла. Затухание поглощения определяется соотношением [48, 49]:

(1.24)

где tgd – тангенс угла диэлектрических потерь в световоде.

Тем не менее, уже к 1990 г. оптические волокна становятся настолько чистыми (99,9999%), что наличие примесей перестает быть основным фактором затухания. Спектральная характеристика затухания a(l) сглаживается (рис. 1.18), при этом проявляются локальные максимумы резонанса поглощения на гидроксильной группе ОН (длины волн 1290 и 1383 нм).

Однако в последних разработках одномодовых оптических волокон за счет улучшения технологии очистки от водяных паров удалось снизить потери и в «водяном» пике. Подобные волокна получили название LWPF (Low Water Peak Fiber), при этом потери в области l=1380±3 нм снижены до 0,31 дБ/км, что меньше, чем потери во втором окне прозрачности.

В таблице 1.6. приведены ведущие производители оптических волокон и соответствующие торговые марки волокон LWPF. а на рис. 1.20 приведены спектральные характеристики коэффициента затухания.

Таблица 1.6.

Производитель

LWPF

Corningâ

SMF-28eTM

Alcatel

6901

Optical Fiber Solutions (OFS)

Allwave

Sumitomo Electric Industries Ltd.

PureBandTM

Yangtze Optical Fibre and Cable (YOFC)

268WY

Pirelli

SMR

В качестве примера на рис. 1.20 приведены спектральные характеристики одномодовых оптических волокон CorningÒ: (а) волокно SMF-28ä с «водяным пиком» – в настоящее время снято с производства; (б) LWPF волокно SMF-28eä.

(а)

(б)

Рис. 1.20. Спектральные характеристики коэффициента затухания одномодовых оптических волокон CorningÒ: (а) волокно SMF-28ä; (б) LWPF волокно SMF-28eä.

На рис. 1.21 представлена спектральная характеристика коэффициента затухания многомодового оптического волокна CorningÒ 50/125.

Рис. 1.21. Спектральная характеристика коэффициента затухания многомодового оптического волокна CorningÒ 50/125.

На длинах волн свыше 1600 нм начинают проявляться потери на инфракрасное поглощение, вызываемые колебаниями связи Si-O молекулы кварца SiO2 , а в ультрафиолетовой части спектра – из-за резонанса электронов, поэтому инфракрасное поглощение часто называют ионным, а ультрафиолетовое – электронным.

Величина потерь на инфракрасное поглощение aик пропорциональна показательной функции и уменьшается с ростом частоты по закону [16]:

(1.25)

где C и k – постоянные коэффициенты (для кварца k=0,7..0,9 мкм; С=0,9).

В 2002 рекордно минимальный коэффициент затухания a составил 0,154 дБ/км на длине волны l=1568 нм (Sumitomo Electric Industries Ltd.). Предыдущий рекорд 0,154 дБ/км был установлен еще в 1986 г. и рассматривался как фактический предел. Сердцевина данного оптического волокна была изготовлена из чистого кварца, оболочка легирована фтором. Составляющие потерь принимали следующие значения: aр=0,128 дБ/км; aик=0,014 дБ/км; примеси OH : 0,004 дБ/км; несовершенство ОВ: 0,004 дБ/км.

Потери в диапазоне l=1520…1606 нм не превышали 0,160 дБ/км.

Кабельные потери

Кабельные потери aк обусловлены деформацией оптических волокон в процессе изготовления и прокладки кабеля. К ним относятся следующие факторы: скрутка; микро и макро изгибы; отклонение о прямолинейности; термомеханические воздействия на ОВ при наложении оболочек и покрытий; особенности технологии производства оптического кабеля.

При соблюдении технических условий (ТУ) на прокладку кабеля номинальный вклад со стороны кабельных потерь составляет не больше 20 % от полного затухания.

Потери на изгибах возникают по трем причинам:

- Первая причина вызвана смещением модового пятна распространяющейся моды на некоторую величину относительно оптической оси сердцевины волокна, которая зависит от радиуса изгиба. Таким образом, в точке перехода прямого световода в изогнутый часть мощности основной моды передается модам высших порядков, которые для одномодовых оптических волокон фактически являются вытекающими и излучаемыми, и в конечном счете теря­ется (рис. 1.22).

- Вторя причина обусловлена тем, что в изогнутом волокне периферийная часть моды распространяется ближе к границе сердцевина/оболочка быстрее, чем основная часть в центральной области сердцевины. В результате периферийная часть моды излучается в оболочку во­локна и, в конечном счете, теряется. Величина этих потерь тем больше, чем больше число витков волокна и чем меньше ради­ус изгиба волокна.

- Третья причина потерь на микроизгибах обусловлена тем, что часть мощности основной моды передается модам высших порядков, а в многомодовых оптических волокнах мощность сигнала также теряется, поскольку направляемые моды высших порядков преобразуются в вытекающие и излучаемые (рис. 1.23).

Рис. 1.22. Факторы потерь на макроизгибе оптического волокна.

Рис. 1.23. Потери на микроизгиб.