3.4.1. Постоянная оптическая память с последовательным способом записи и считывания информации

3.4.2. Оперативная оптическая память

3.4.3. Принципы голографической записи информации

Достоинства оптических модуляторов, дефлекторов, управляемых транспарантов и других элементов систем оптической обработки информации не могут в полной мере реализоваться без адекватных устройств оптической памяти с большой емкостью, плотностью и скоростью записи, малым временем поиска (выборки), высокой долговечностью и надежностью хранения информации.

Как отмечалось выше, оптический транспарант, у которого модулирующая среда даже малое время может сохранять после прекращения внешнего воздействия отличный от равновесного состояния оптический параметр, по существу является устройством оперативной памяти (для многих случаев достаточна длительность хранения информации всего 10-8—10-9 с). Ниже, кроме запоминающих устройств (ЗУ) такого типа, будут рассмотрены устройства долговременной (постоянной, архивной) памяти.

Создание оптических ЗУ продиктовано тем, что используемая в электронных устройствах магнитная память сталкивается с серьезными трудностями в связи с возрастающими требованиями, предъявляемыми к системам обработки информации. Кроме кардинального увеличения плотности и скорости записи, существенного уменьшения габаритов, веса и стоимости, устройства оптической памяти позволяют производить параллельную запись и выборку двумерных массивов информации. Тем не менее в оптических ЗУ используют оба способа записи — как параллельный, так и последовательный. Хотя оптические ЗУ допускают запись информации непосредственно в аналоговой форме, ниже будут рассматриваться также устройства с записью в цифровой двоичной форме, что обеспечивает большую точность, помехозащищенность, универсальность записи.

3.4.1. Постоянная оптическая память с последовательным способом записи и считывания информации

Упрощенная структурная схема записи информации последовательного типа при помощи сканирующего луча лазера приведена на рис. 3.9. Чтобы обеспечить высокую плотность записи, излучение лазера стараются сфокусировать в пятно как можно меньших размеров (из-за дифракции эти размеры не могут быть меньше длины волны излучения и обычно близки к 1мкм). Промодулированный необходимым образом луч направляют через объектив на запоминающую среду, а его геометрическое положение задают оптическим двухкоординатным дефлектором. В наиболее простом случае в качестве такой среды используют серебряно-галоидные эмульсии, нанесенные на прозрачную подложку. Фотоэмульсии, обеспечивающие, разумеется, постоянную (нереверсивную) память, имеют высокую разрешающую способность (тысячи линий на миллиметр) и высокую энергетическую чувствительность 10-4 — 10-6 Дж/см (для различных типов фотоэмульсии). После проявления и фиксирования изображение проецируют при помощи считывающего объектива на детектор излучения, например на матрицу фотоприемников. Источником света при этом служит сканирующий луч того же лазера (модулятор при считывании открыт).

Поиск сред для оптической памяти с оптимальным сочетанием чувствительности, разрешающей способности и других характеристик привел к использованию кроме фотоэмульсии многих других материалов, в частности фоторезисторов. Все эти материалы требуют обработки с использованием жидкостей, причем достаточно длительной, в лучшем случае—единиц секунд (для некоторых резисторов возможна «сухая» термообработка при температуре 150 — 200оС).

Подпись: Рис. 3.9. Структурная схема последовательной оптической записи информации:
1 — ОКГ, 2 — модулятор,
3–дефлектор, 4 — объектив— линза, 5 — запоминающая среда

Побитовую запись информации можно осуществлять прожиганием (проплавлением) при помощи сфокусированного лазерного луча сквозных отверстий размером около 1 мкм в тонких (~0,05 мкм) слоях Pt, Bi, Rh, As, Cr и других веществ, нанесенных на прозрачную, например полиэфирную, основу. Достоинство такой записи, считывание которой может производиться тем же лазером, но с меньшей интенсивностью луча, чтобы не повредить запись, — большое значение отношения сигнал/шум, высокая надежность и большой срок службы. Еще один способ записи в виде кодированной последовательности импульсов состоит в создании микро углублений или пятен (питов) на поливинилхлоридной или полиметакрилатной пластине с нанесенным на ее поверхности слоем теллура (20 — 40 мкм), как легкоплавкого материала, сильно поглощающего инфракрасное излучение.

Наконец, в металлическом слое можно формировать микробугорки. В этом случае используют тугоплавкие материалы (Ti, Pt), а в качестве диэлектрического подслоя — хорошо испаряемый материал. Под действием лазерного луча металлическая пленка не выжигается и не проплавляется, а в результате испарения подслоя в соответствующем месте образуется выпуклость. Пленку с записанной информацией покрывают слоем прозрачного материала, который предназначен прежде всего для защиты носителя информации от повреждений и гарантирует большой срок службы. Если защитный слой относительно толстый (как обычно и делается), инородные частицы, царапины и другие микродефекты на его поверхности оказываются не в фокусе считывающего объекта и, следовательно, слабо искажают сигнал.

Запоминающая пленочная структура может быть укреплена или нанесена на вращающемся диске из стекла, кварца, ситалла или полимера. Информацию записывают на дорожках с шагом 1,5 — 2 мкм, что при диаметре диска 30 см позволяет записывать более 1·1010 бит информации. Такой емкости достаточно для кодирования 20 — 30-минутной цветной телепрограммы, или нескольких десятков тысяч страниц машинописного текста, что сравнимо с информацией «Большой Советской Энциклопедии».

Трудности использования оптических дисков связаны с необходимостью точной юстировки лазерной головки и носителя информации. Надежное считывание практически невозможно без специальной сервосистемы, обеспечивающей точное слежение и следование сканирующего луча по информационной дорожке. Очевидно, что для того, чтобы при записи метки на диске не «размазывались» из-за его вращения, импульсы излучения лазера должны быть достаточно короткими (~1·10-8 с). Фотоприемник, используемый при считывании, должен обладать высоким быстродействием (10-8 — 10-9 с).

Сравнение магнитной и оптической памяти свидетельстует о несомненных преимуществах последней. Оптическую память отличают высокое качество записи и воспроизведения при намного большем сроке службы (механический контакт считывающего устройства с носителем информации отсутствует), большая плотность записи, длительный срок хранения (десятки лет вместо 1 г при магнитной записи) и намного меньшая стоимость. Недостаток рассмотренных устройств оптической памяти — однократность записи; изготовление копий, разумеется, возможно. Для тиражирования записи с первичного оптического диска (без защитного покрытия) методами гальванотехники изготовляют металлический оригинал, а из него в нужном количестве прессуют пластмассовые копии. На вторичные диски со стороны записи наносят пленку с высокой отражательной способностью (алюминий), а поверх него—прозрачный защитный слой. Используемые для высококачественного звуковоспроизведения оптические диски малого диаметра (11,5 — 12см) называют компакт-дисками. Подобным образом возможно также тиражирование дисков для видеовоспроизведения.

3.4.2. Оперативная оптическая память

Устройства оперативной памяти, в отличие от рассмотренных выше, должны обладать реверсивностью, т. е. после кратковременного стирающего воздействия быть готовыми к записи новой информации. Свойства используемой среды не должны изменяться при большом числе циклов запись—стирание и позволять за как можно короткое время производить запись и стирание информации. В ЗУ оперативной оптической памяти используют многие физические эффекты, в частности, применяют рассмотренные ранее устройства Фототитус, ПРОМ, а также структуры фотопроводник — ЖК, фотопроводник — сегнетоэлектрическая ЦТСЛ-керамика и многие другие.

Возможны устройства оптической памяти, использующие запись на фотохромных материалах — веществах, поглощение которых обратимо изменяется под действием оптического излучения непосредственно, т. е. без какого-либо проявления. Среди большого числа фотохромных материалов достаточно широкое распространение получили полимеры, силикатные стекла, щелочно-галоидные кристаллы (КС1, NaF, CaF и т. д.). При фотохромном процессе вещество, поглощая кванты света, переходит из исходного состояния в фотоиндуцированное, характеризуемое изменением оптического пропускания в другой спектральной области. Для записи и считывания информации, следовательно, требуется излучение с различной длиной волны (например, 0,2 — 0,4 мкм при записи и 0,4 — 0,7 мкм при считывании). Обратный переход в исходное состояние совершается самопроизвольно, но может заметно ускориться под действием света, поглощаемого в фотоиндуцированном состоянии, поэтому при считывании световая энергия должна быть на несколько порядков выше, чем при записи.

Время хранения записанной информации различно для разных материалов: от 1·10-6 с до нескольких лет. Для фотохромных материалов характерны малые времена записи (~1·10-8 с) и высокая разрешающая способность (~3000 лин/мм). Запись можно производить в различных плоскостях фотохромного материала, причем переход от одной плоскости к другой осуществляется изменением фокусного расстояния записывающего и считывающего объективов. Несмотря на некоторую потерю оптического контраста, удается использовать для записи множество слоев, что приводит к огромной объемной плотности записи.

В устройствах памяти, основанных на магнитооптических эффектах, используют слои ферромагнитных материалов с большой коэрцитивной силой, способных надолго сохранять намагниченность после выключения внешнего магнитного поля. В тонком слое такого материала под действием излучения лазерного луча происходит локальный нагрев и, если при этом температура превысит точку Кюри, вектор намагниченности скачком изменяется. Вращение плоскости поляризации прошедшего через слой считывающего света (эффект Фарадея) оказывается разным в предварительно освещенных и неосвещенных участках. Считывание можно осуществить и отраженным светом, используя уже упомянутый магнитооптический эффект Керра.

Для стирания информации, записанной ферромагнитным слоем, его нагревают световым импульсом или каким-либо другим способом в присутствии магнитного поля, в результате чего восстанавливается его первоначальное магнитное состояние. Хотя при считывании информации в рассматриваемых случаях используют магнитооптические эффекты, такой способ записи принято также называть термомагнитным. Среди подходящих материалов для термомагнитной записи хорошо изучен марганцевый висмут MnBi, имеющий температуру Кюри примерно 360оС, достаточно хорошее разрешение (103 лин/мм), малое время записи (~1·10-8 с), большой срок хранения записанной информации, а также ресурс работы. В качестве запоминающего материала в магнитооптических дисках используют сплавы MnA1Ge, MnCuBi, оксиды лантаноидов (например, ЕuО и др.), висмутосодержащие гранаты, а также аморфные пленки Tb1-хFex и соединения на их основе (с добавлением кобальта, хрома, кадмия, гадолиния и др.).

Пленки Tb1-хFex являются ферримагнетиками, т. е. магнитные моменты атомов тербия и железа ориентированы антипараллельно, и в определенном интервале х в пленке возникает анизотропия с осью, перпендикулярной плоскости пленки. Запись, считывание и стирание информации производят практически так, как и в случае устройства памяти на основе MnBi. Достоинство аморфных пленок Tb1-хFex состоит в отсутствии эффектов рассеяния на границах зерен, в отличие от поликристаллического MnBi или других подобных материалов. Температура Кюри Tb1-хFex зависимости от х изменяется в пределах 40 — 140оС, разрешение — более 1·104 лин/мм, время цикла запись — стирание — около 1·10-8 с. Информационная емкость магнитооптических дисков диаметром 30 см составляет 109 — 1010 бит.

На локальном нагреве лазерным лучом основывается запись в халькогенидных стеклах, содержащих серу, теллур, мышьяк и другие элементы (например, As — Se, Sb — S, As — Sb — S, As — Bi — S, Ge — S, Те — Ge — As и т. п.). Однако механизм памяти в этом случае другой. При превышении температуры расстеклования, но ниже точки плавления, происходит фазовый переход из аморфного состояния материала в кристаллическое, в результате чего изменяется показатель преломления света, что и используют при считывании информации. Переход пленки в аморфное состояние (стирание) производят нагревом до температуры плавления и последующим быстрым охлаждением. Запись на таких пленках, как и при термомагнитной записи, сохраняется длительное время, энергетическая чувствительность примерно такая же, разрешение превышает 1·10 лин/мм, однако оптическое пропускание стекол может достигать ~~80% ( 1·10-3 для MnBi). Для реверсивной записи применяют также получаемый вакуумным испарением аморфные пленки ТеОх(х=1,1÷1,2). Под действием лазерного луча происходит фототермический переход, в результате чего заметно изменяются оптическое пропускание и отражение пленки. Работающие на этом принципе оптические диски позволяют производить многократную перезапись (например, музыкальных программ) вплоть до 1·10-6 раз.

Работа быстродействующих многоканальных транспарантов, обладающих реверсивной памятью, может основываться на элементе, предложенном в начале 80-х годов и названном трансфазором. В этом устройстве используют оптическую нелинейность материала, проявляющуюся в изменении коэффициента преломления при увеличении интенсивности падающего света. В трансфазоре световой пучок направляют на плоско параллельную пластинку из нелинейного кристалла, образующую интерферометр Фабри — Перо, роль зеркал в котором могут играть либо естественные (отполированные) грани кристалла, либо нанесенные на них тонкие полупрозрачные металлические пленки. Толщину пластинки выбирают такой, чтобы при низких интенсивностях света, когда кристалл можно считать линейным, разность фаз лучей, многократно отражающихся от зеркальных граней, была равна нечетному числу π и интенсивность пучка на выходе была малой (Фвых=0). Такое условие нарушается в области больших световых потоков (вполне достижимых при использовании ОКГ), когда значение п, а значит, и оптическая длина пути начинают возрастать. Это вызывает увеличение интенсивности света внутри резонатора, что, в свою очередь, приводит к еще большему возрастанию п и т. д. Устройство скачкообразно переходит в состояние с пропусканием, близким к единице.

На практике на трансфазор направляют два лазерных луча. Один из них имеет постоянную интенсивность Фпост соответствующую низкому пропусканию, но близкую к пороговому состоянию. Небольшая подсветка другим лучом (Фупр) переключает трансфазор в состояние с максимальным Фвых. За счет Фпост такое состояние может поддерживаться как угодно долго, а при отключении Фпост кристалл скачкообразно переходит в исходное состояние, т. е. он уже не пропустит второго луча Фупр. Таким образом, трансфазор является оптически бистабильным элементом, который можно рассматривать как оптический аналог электронного транзистора.

Трансфазор переключается намного быстрее, чем транзистор. Действительно, быстродействие трансфазора ограничено временем установления светового поля внутри резонатора, а оно по порядку величины равно hn/с, т. е. при толщине пластинки h=10 мкм составляет ~1·10-13 с. Во всяком случае работа трансфазора в пикосекуцдном диапазоне (10-12 с) вполне реальна. Его поперечные размеры ограничены сечением лазерного пучка, т. е. трансфазор может быть таким же миниатюрным, как и транзистор. При использовании в качестве материала для трансфазора, например, сурьмянистого индия или моноселенида галлия энергия переключения составляет всего 1·10-15 Дж при мощности постоянной предпороговой подсветки ~10 мВт. Трудности на пути реализации устройств на базе трансфазоров связаны с тем, что используемые для этого материалы требуют охлаждения.

В устройствах оперативной памяти могут использоваться и другие эффекты и материалы (см. д 3.3).

3.4.3. Принципы голографической записи информации

Голографическая память основывается на записи интерференционной картины, образованной в результате сложения световой волны, отраженной от объекта или прошедшей через него (объектной волны), и когерентной волны, идущей непосредственно от источника света (опорной волны). Если зафиксированную картину (голограмму) затем осветить тем же опорным источником, расположенным относительно нее точно так же, как и при записи, то в результате взаимодействия опорной волны с голограммой в пространстве образуется волна, восстанавливающая изображение объекта, совпадающее с ним по форме и пространственному положению (обязательно требование для используемых световых потоков — их когерентность).

Важно, что голограмма, в отличие от фотографического снимка, фиксирует не только распределение амплитуд, но и распределение фаз объектной волны относительно опорной. Информация о соотношении фаз объектной и опорной волн отражается рисунком и частотой полос интерференционной картины, а об амплитуде — ее контрастом. При помощи голограммы, таким образом, восстанавливается амплитудно-фазовое распределение волнового поля, т. е. создается копия объектной волны, а не только светоконтрастная характеристика объекта, как при обычном фотографировании. Этим объясняется чрезвычайно высокая информационная емкость голографического способа записи информации.

Поскольку при записи свет от каждой точки объекта падает на всю поверхность голограммы, каждый малый ее участок способен восстановить изображение объекта, хотя и с меньшим соотношением сигнал/шум и с потерей разрешения мелких деталей. Поэтому на качество записи голограммы слабо влияют различные дефекты — пятна, пылинки, царапины и т. п. Это обусловливает высокую надежность и помехозащищенность голографической записи. Количественную характеристику, отражающую способность голограммы трансформировать опорную волну в восстановленное изображение, называют дифракционной эффективностью и определяют как отношение мощности светового потока в восстановленном изображении к мощности светового потока в восстанавливающей волне.

Подпись: Рис. 3.10. Структурная схема голографической записи информации:
1 — лазер, 2, 5 — оптические затворы, 3 — дефлектор, 4 — полу-прозрачное зеркало, 6, 8 — объективы, 7 — оптический транспарант, 9 —запоминающая среда, 10 — зеркало

Часто голограммы регистрируют на фотопластинках, причем различные участки фотопластинки можно использовать для записи разных голограмм. Минимальные размеры этих участков теоретически определяются дифракционными явлениями, однако на практике плотность записи оказывается заметно меньшей.

Оптическая схема голографической записи (рис. 3.10) обычно включает в себя светоделитель (например, полупрозрачное зеркало), который устанавливают на пути лазерного луча, освещающего записываемый объект и образующего объектную волну. При помощи отклоняющих устройств (дефлекторов, зеркал и т. п.) опорную волну направляют на нужный участок фотопластинки (как и объектную волну). Если объектом записи служит оптический транспарант, то на каждом таком участке, обычно не превышающем 1 — 2 мм2, записывается не один бит информации, а целое изображение (страница информации емкостью 1·104 — 1·105 бит). Один и тот же участок регистрирующего материала может содержать несколько наложенных голограмм, не влияющих друг на друга, если при записи каждый раз изменять угол падения опорного луча. Разумеется, при считывании его направление должно соответственно изменяться, чтобы быть таким же, как и при записи. Нужно, однако, иметь в виду, что увеличение числа наложенных голограмм приводит к уменьшению дифракционной эффективности.

До сих пор предполагалось, что толщина регистрирующей среды намного меньше периода интерференционной картины (двумерные голограммы). В противоположном случае голограмма представляет собой не плоскую картину интерференционных полос, а объемную структуру, повторяющую пространственную картину интерференции объектной и опорной волн. Трехмерный способ записи голограмм как наиболее общий предложил и обосновал в 1962 г. Ю.Н. Денисюк. При восстановлении изображения объемная голограмма действует подобно трехмерной дифракционной решетке. Отражение света от интерференционных слоев (брэгговское) происходит только при выполнении условия, аналогичного (3.11): , где d—расстояние между соседними слоями; θБ — угол между падающим светом и плоскостью слоев.

Таким образом, трехмерная голограмма обладает спектральной избирательностью (селективностью), т. е. для восстановления изображения можно применять источники со сплошным спектром (например, лампу накаливания, Солнце). При этом голограмма «выберет» излучение той длины волны, которое использовалось при записи (двумерные голограммы не обладают спектральной селективностью и восстанавливаемое изображение окажется размытым). Свойство трехмерных голограмм воспроизводить спектральный состав записывающего излучения позволяет значительно увеличить информационную емкость за счет записи в одной и той же области регистрирующей среды множества изображений, используя каждый раз излучение с разной длиной волны. Нужное изображение может быть считано независимо, для чего его нужно восстанавливать излучением соответствующей длины волны. Еще одно достоинство трехмерной голограммы состоит в том, что она восстанавливает только одно изображение. Двумерная голограмма трансформирует опорную волну как в объектную, так и в так называемую сопряженную волну, создающую ложное изображение, что может усложнить считывание информации.

Голографическую запись можно произвести как в цифровой, так и аналоговой форме; использовать в устройствах как постоянной, так и реверсивной памяти, включая системы обработки данных в реальном масштабе времени.

Развитие голографических методов записи привело к использованию многих пригодных для этого материалов. При этом важнейшее требование, предъявляемое к ним,— высокая разрешающая способность. Для специальных серебряно-галоидных фотоэмульсий она достигает 3000 — 5000 лин/мм (в красной области спектра). Некоторую потерю разрешающей способности, но выигрыш по дифракционной эффективности, можно получить, применяя для записи голограмм бихромированной желатины и фоторезисторы различных типов. Голограмма, зафиксированная на фотоэмульсии, за счет почернения модулирует световой поток по амплитуде, однако при этом происходит и его фазовая модуляция, так как одновременно изменяются толщина и коэффициент преломления эмульсии. Голограмма, полученная на прозрачном материале, модулирует свет только по фазе. В соответствии с этим различают фазовые и амплитудные голограммы. В первом случае дифракционная эффективность голограммы может приближаться к 100%, во втором, обычно составляет несколько процентов (фотоэмульсию с записанной голограммой поэтому отбеливают).

Для голограмм, допускающих многократную перезапись, применяют многие из материалов, используемых при других оптических методах записи. Для получения фазовых голограмм сразу же после экспозиции используют фототермопластики, обеспечивающие высокую дифракционную эффективность, а также другие реверсивные материалы: фотохромные, магнитооптические, халькогенидные стекла и др.

Для трехмерной записи голограмм применяют материал реоксан-полимер с добавлением красителя-сенсибилизатора и антрацена. Запись в реоксане основывается на фотоиндуцированной реакции окисления антрацена, в результате чего происходит изменение коэффициента преломления практически без уменьшения оптического пропускания. При этом глубина записи голограммы может достигать нескольких миллиметров.