15.3.1. Расширение сигнала во времени, рассматриваемое в области задержки

15.3.1.1. Категории ухудшения качества передачи вследствие расширения сигнала во времени, рассматриваемого в области задержки

15.3.2. Расширение сигнала во времени, рассматриваемое в частотной области

15.3.2.1. Категории ухудшения качества передачи вследствие расширения сигнала во времени, рассматриваемого в частотной области

15.3.3. Примеры амплитудного и частотно-селективного замирания

15.3.1. Расширение сигнала во времени, рассматриваемое в области задержки

Простой способ моделирования явлений замирания был предложен Белло (Bello) [13] в 1963 году; он ввел понятие стационарного в широком смысле некоррелированного рассеяния (wide-sense stationary uncorrelated scattering — WSSUS). В такой модели сигналы, поступающие на антенну приемника с различными задержками, рассматриваются как некоррелирующие. Можно показать [2, 13], что такие каналы являются эффективно стационарными в широком смысле, как во временной, так и в частотной области. Применив такую модель к каналу с замиранием, Белло смог определить функции, которые применимы для любого момента времени и любой частоты. На рис. 15.8 для мобильного канала указаны четыре такие функции, составляющие названную модель [2, 10, 13-15]. Рассмотрим функции, начиная с рис. 15.8, а и двигаясь против часовой стрелки в направлении рис. 15.8, г.

Рис. 15.8. Соотношения между корреляционными функциями канала и функциями плотности мощности

На рис. 15.8, а отображен профиль интенсивности многолучевого распространения (зависимость S() от задержки ). Зная S(), можно определить, как для переданного импульса полученная мощность зависит от временной задержки . Термин "временная задержка" (time delay) используется для обозначения избыточной задержки распространения сигнала. Он представляет задержку данного сигнала относительно времени поступления на приемник первого сигнала. Для типичного беспроводного канала полученный сигнал обычно состоит из нескольких дискретных многолучевых компонентов, приводящих к появлению изолированных пиков S(), называемых иногда пальцами, или отраженными сигналами. Для некоторых каналов, таких как тропосферный канал с рассеянием, принятые сигналы выглядят как континуум многолучевых компонентов [10, 15]. В таких случаях S() — это относительно гладкая (непрерывная) функция . Для измерения профиля интенсивности многолучевого распространения необходимо воспользоваться широкополосными сигналами (импульсы или сигналы с расширенным спектром) [15]. Для единичного переданного импульса время Тm между приемом первого и последнего компонентов представляет собой максимальную избыточную задержку распространения, после которой мощность многолучевого сигнала падает ниже определенного порогового уровня относительно самого мощного компонента. Пороговый уровень можно выбрать на 10 или 20 дБ ниже уровня самого мощного луча. Отметим, что в идеальной системе (нулевая избыточная задержка) функция S() состояла бы из идеального импульса с весовым коэффициентом, равным общей средней мощности полученного сигнала.

15.3.1.1. Категории ухудшения качества передачи вследствие расширения сигнала во времени, рассматриваемого в области задержки

В канале с замираниями взаимосвязь между максимальной избыточной задержкой распространения Тm и временем передачи символа Тs можно рассматривать с позиции двух различных категорий ухудшения качества передачи: частотно-селективного замирания (frequency-selective fading) и частотно-неселективного (frequency nonselective fading), или амплитудного замирания (flat fading) (см. рис. 15.1, блоки 8 и 9, и рис. 15.7). Говорят, что канал обнаруживает частотно-селективное замирание, если Тт > Ts. Это условие реализуется, когда полученный многолучевой компонент символа выходит за пределы длительности передачи символа. Такая многолучевая дисперсия порождает тот же тип искажений ISI, что и электронный фильтр. Фактически другим названием этой категории ухудшения передачи вследствие замирания является вводимая каналом ISI. При частотно-селективном замирании возможно уменьшение искажений, поскольку многие многолучевые компоненты разрешаются приемником. (Несколько подобных методов борьбы с замиранием описаны в следующих разделах.)

Говорят, что канал является частотно-неселективным или проявляется амплитудное замирание, если Тт < Ts. В этом случае все полученные многолучевые компоненты символа поступают в течение времени передачи символа; поэтому компоненты не разрешаются. В данном случае отсутствуют искажения за счет вводимой каналом ISI, так как расширение сигнала во времени не приводит к существенному наложению соседних полученных символов. Однако ухудшение характеристик все же имеет место, поскольку неразрешенные компоненты вектора сигнала могут деструктивно суммироваться, что приводит к значительному уменьшению SNR. К тому же сигнал, классифицированный как проявляющий амплитудное замирание, может иногда испытывать частотно-селективное замирание. Это будет объяснено позже, при рассмотрении ухудшения характеристик в частотной области, в которой такие явления описываются проще. При уменьшении SNR за счет амплитудного замирания можно использовать специальные методы подавления замирания, улучшающие принимаемое значение SNR (или уменьшающие требуемое SNR). Для цифровых систем наиболее эффективным способом является введение каких-либо форм разнесения сигналов и использование кодов коррекции ошибок.

15.3.2. Расширение сигнала во времени, рассматриваемое в частотной области

Полностью аналогичное описание дисперсии сигнала можно привести и в частотной области. На рис. 15.8, б можно видеть функцию ||, обозначенную как корреляционная функция разнесения частоты; это Фурье-образ S(). Функция представляет корреляцию между реакциями канала на два сигнала как функцию разности частот этих сигналов. Ее можно рассматривать так, как частотную передаточную функцию канала. Следовательно, расширение сигнала во времени можно рассматривать как следствие процесса фильтрации. Зная , можно определить, какова корреляция между полученными сигналами, разнесенными по частоте на . Функцию можно измерить, передавая пару синусоид, разнесенных по частоте на , изучая взаимную корреляцию спектров двух полученных сигналов и повторяя этот процесс многократно посредством увеличения . Таким образом, измерение можно проводить с помощью синусоид, смещающихся по частоте вдоль интересующей полосы (широкополосный сигнал). Полоса когерентности (coherence bandwidth) f0 является статистической мерой диапазона частот, по которому канал пропускает все спектральные компоненты с приблизительно равным коэффициентом усиления и линейным изменением фазы. Таким образом, полоса когерентности представляет диапазон частот, в пределах которого частотные компоненты сигнала имеют большую вероятность амплитудной корреляции. Иными словами, на все спектральные компоненты этого диапазона канал влияет одинаково, например, проявляя или не проявляя замирание. Следует отметить, что f0 и Ттвзаимосвязаны (с точностью до постоянного множителя). Можно сказать, что приблизительно

f0 = 1/ Tm (15.16)

Максимальная избыточная задержка Ттне обязательно является наилучшим показателем того, как будет функционировать произвольная система при распространении сигнала в канале, поскольку различные каналы с одинаковым значением Тm могут иметь весьма различный профиль интенсивности сигнала в период задержки. Более подходящим параметром является разброс задержек, который чаще всего описывается через среднеквадратическое значение и называется среднеквадратическим разбросом задержек.

(15.17)

Здесь - это средняя избыточная задержка, - квадрат среднего, - второй момент, а - квадратный корень второго центрального момента S() [1].

Не существует универсального соотношения между полосой когерентности и разбросом задержек. Однако, используя метод Фурье-преобразований и измерения дисперсии реальных сигналов в различных каналах, можно получить полезную аппроксимацию. В настоящее время разработано несколько приблизительных соотношений. Если полоса когерентности определена как интервал частот, в пределах которого комплексная частотная передаточная функция канала имеет корреляцию не менее 0,9, то полосу когерентности можно приблизительно записать в следующем виде [16].

(15.18)

Для мобильной радиосвязи в качестве подходящей модели описания распространения в городской среде обычно берут совокупность рассеивающих элементов, имеющих радиальное равномерное распределение, равные коэффициенты отражения, но независимые случайные фазовые углы отражения [17, 18]. Эту модель называют моделью канала с плотным размещением рассеивающих элементов. При ее использовании полоса когерентности частот определяется подобным образом [17]: интервал частот, в пределах которого комплексная частотная передаточная функция канала имеет корреляцию не менее 0,5.

(15.19)

При изучении ионосферных эффектов часто используют следующее определение [19].

(15.20)

Более распространенным приближением для f0, соответствующим определению, где корреляция должна быть не меньше 0,5, является следующее [1].

(15.21)

Разброс задержек и полоса когерентности связаны с характеристиками многолучевого распространения в канале и отличаются для разных путей распространения (городская черта, пригород, холмистая местность, помещения и т.д.). Важно отметить, что параметры в уравнении (15.21) не зависят от скорости передачи сигналов. Скорость передачи влияет только на ширину полосы пропускания, W.

15.3.2.1. Категории ухудшения качества передачи вследствие расширения сигнала во времени, рассматриваемого в частотной области

Канал называется частотно-селективным (frequency-selective), если f0<1/TS = W, где скорость передачи символов 1s номинально берется равной скорости передачи сигналов или ширине полосы частот сигнала W. На практике W может отличаться от 1/Ts из-за системной фильтрации или выбора типа модуляции данных (например, QPSK, MSK, расширение спектра и т.д.) [20]. Частотно-селективное замирание проявляется тогда, когда канал неодинаково влияет на разные спектральные компоненты сигнала. Некоторые спектральные компоненты сигнала, не входящие в полосу когерентности, будут подвергаться различному (и независимому) воздействию, в отличие от тех компонентов, которые приходятся на полосу когерентности. На рис. 15.9 приведено три примера. В каждом из них показана зависимость спектральной плотности от частоты переданного сигнала, имеющего полосу W Гц. На графике (рис. 15.9, а) на сигнал наложена частотная передаточная функция частотно-селективного канала (f0<W). На рис. 15.9, а показано, что различные спектральные компоненты переданного сигнала будут подвергаться различному воздействию.

Частотно-неселективное, или амплитудное, ухудшение характеристик происходит тогда, когда f0 > W. Следовательно, все спектральные компоненты сигнала будут подвергаться одинаковому воздействию со стороны канала (например, замирать или не замирать). Это показано на рис. 15.9, б, где изображена спектральная плотность того же переданного сигнала, имеющего полосу W Гц.

Рис. 15.9. Связь между частотной передаточной функцией канала и переданным сигналом с полосой W

Однако на этот сигнал теперь наложена частотная передаточная функция канала с амплитудным замиранием (f0>W). Из рис. 15.9, б видно, что воздействие на все спектральные компоненты будет приблизительно равным. Амплитудное замирание не привносит искажений, связанных с внесенной каналом ISI, однако все же стоит ожидать ухудшения характеристик сигнала, выражающегося в уменьшении SNR. Чтобы избежать искажения вследствие внесенной каналом ISI, необходимо, чтобы канал проявлял амплитудное замирание. Это происходит при следующем условии.

(15.22)

Следовательно, полоса когерентности f0 устанавливает верхний предел скорости передачи, которую можно использовать, не включая в приемник эквалайзер.

На рис. 15.9, б показано обычное графическое представление амплитудного замирания, когда f0>W (или Тт<Ts). Однако если мобильный радиоприемник будет менять свое местонахождение, некоторое время получаемый сигнал будет подвергаться частотно-селективному искажению, несмотря на то что f0 > W. Соответствующая иллюстрация приведена на рис. 15.9, в, где нуль частотной передаточной функции канала находится около середины полосы спектральной плотности переданного сигнала. Когда это происходит, узкополосный импульс может искажаться собственными смещенными низкочастотными компонентами. Одним из последствий этого является отсутствие надежного максимума импульса, составляющего основу синхронизации или предназначенного для выборки фазы несущей, переносимой импульсом [17]. Таким образом, хотя канал (на основе среднеквадратических соотношений) отнесен к каналам с амплитудным замиранием, он может периодически проявлять и частотно-селективное замирание. Стоит отметить, что канал мобильной радиосвязи, классифицированный как канал с амплитудным замиранием, не может все время проявлять амплитудное замирание. Когда f0 становится намного больше W (или Тm становится намного меньше Тs), все меньший интервал времени реализуется состояние, показанное на рис. 15.9, в. Очевидно, что замирание на рис. 15.9, а не зависит от места в полосе частот сигнала, так что частотно-селективное замирание происходит не эпизодически, а все время.

15.3.3. Примеры амплитудного и частотно-селективного замирания

На рис. 15.10 показано несколько примеров амплитудного и частотно-селективного замирания для систем со спектром, расширенным методом прямой последовательности (direct-sequence spread-spectrum — DS/SS) [19, 20]. На этом рисунке изображены три графика зависимости выхода коррелятора псевдослучайного (pseudonoise — PN) кода от задержки как функции времени (времени передачи или наблюдения). Каждый график зависимости амплитуды от задержки подобен зависимости S() от , показанной на рис. 15.8, а. Ключевое различие состоит в том, что амплитуды, показанные на рис. 15.10, представляют выход коррелятора; следовательно, форма сигнала является функцией импульсной характеристики не только канала, но и коррелятора. Задержка выражена в единицах длительности элементарных сигналов, где элементарный сигнал (chip) определяется как минимальный (по длительности) операционный блок системы расширенного спектра. На каждом графике время наблюдения отложено на оси, перпендикулярной плоскости зависимости амплитуды от задержки. Рис. 15.10 составлен по данным канала связи спутник-земля, проявляющего сцинтилляцию вследствие атмосферных помех. В то же время рис. 15.10 является полезной иллюстрацией трех различных состояний канала, которые могут быть применены для мобильной радиосвязи. Как показано на рисунке, на мобильный радиоприемник, движущийся вдоль оси времени наблюдения, влияют изменения профиля многолучевого распространения вдоль маршрута распространения. Ось времени наблюдения проградуирована в единицах элементарных сигналов. На рис. 15.10, а дисперсия сигнала (один пик отраженного сигнала) составляет порядка длительности элементарного сигнала Tch. В типичной системе DS/SS, ширина полосы сигнала расширенного спектра приблизительно равна 1/Tch; таким образом, нормированная полоса когерентности f0Tch на рис. 15.10, а приблизительно равна единице, из чего следует, что ширина полосы когерентности равна порядка ширины полосы расширенного спектра. Это характерно для канала, который можно назвать частотно-неселективным, или слабо частотно-селективным. На рис. 15.10, б, где f0Tch = 0,25, дисперсия сигнала выражена более резко. Существует явно выраженная интерференция между элементарными сигналами, возникающая вследствие того, что ширина полосы когерентности составляет приблизительно 25 процентов от ширины полосы расширенного спектра. На рис. 15.10, в, где f0Tch = 0,1, дисперсия сигнала выражена еще более явно; интерференция между элементарными сигналами возросла вследствие того, что ширина полосы когерентности составляет приблизительно 10 процентов от полосы расширенного спектра. Полосы когерентности (относительно скорости передачи сигнала расширенного спектра), показанные на рис. 15.10, б, в, описывают каналы, которые можно назвать, соответственно, умеренно и сильно селективными по частотам. Позже будет показано, что системы DS/SS, работающие с частотно-селективными каналами на уровне элементарных сигналов, не обязательно испытывают частотно-селективные искажения на уровне символов.

Временная задержка (элементарные сигналы)

Рис. 15.10. Примеры временной развертки выхода согласованного фильтра DS/SS для трех случаев, где Tchдлительность элементарного сигнала. (Источник: Bogusch R. L. "Digital Communications in Fading Channels: Modulation and Coding". Mission Research Corp., Santa Barbara, California, Report no. MRC-R-1034, March, 11, 1987.)

Проявление дисперсии сигнала в каналах с замираниями является аналогом расширения сигнала, характерного для электронного фильтра. На рис. 15.11, а изображен широкополосный фильтр (короткая импульсная характеристика) и его влияние на сигнал во временной и частотной областях. Этот фильтр похож на канал с амплитудным замиранием, выход которого относительно неискажен. На рис. 15.11, б показан узкополосный фильтр (широкая импульсная характеристика). Выходной сигнал претерпевает большее искажение как во временной, так и в частотной области. Данный процесс подобен происходящему в частотно-селективном канале.

а) Характеристики канала с амплитудным замиранием

б) Характеристики канала с частотно-селективным замиранием

Рис. 15.11. Характеристики частотно-селективного и амплитудного замирания. (Источник: Rappaport T. S. "Wireless Communications". Prentice-Hall, Upper Saddle River, New Jersey, 1996.)