К тугоплавким относятся металлы с температурой плавления, превышающей 1700°С. Как правило, они химически устойчивы при низких температурах, но становятся активными при повышенных. Эксплуатация их при высоких температурах может быть обеспечена в атмосфере инертных газов или в вакууме. В плотном виде чаще всего эти металлы получают методами порошковой металлургии – прессовкой и спеканием. В электронной технике начинают распространяться плавка электронным или лазерным лучом, зонная очистка, плазменная обработка и т.д. Механическая обработка этих материалов трудна и часто требует подогрева.
2.7.1. Вольфрам
Чрезвычайно тяжелый, твердый металл серого цвета. Из всех металлов вольфрам обладает наиболее высокой температурой плавления (3380°С). Его извлекают из руд различного состава, наиболее известными среди которых являются вольфрамит (FeWO4 + MnWO4) и шеелит (CaWO4) путем сложной химической обработки. Для вольфрама характерна слабая механическая связанность кристаллов, поэтому при зернистом строении сравнительно толстые вольфрамовые изделия весьма хрупки и легко ломаются. В результате механической обработки ковкой и волочением вольфрам приобретает волокнистую структуру и излом его весьма затруднен. Этим объясняется гибкость тонких вольфрамовых нитей.
Из вольфрама изготавливают нити ламп накаливания, а также электроды, подогреватели, пружины и крючки в электронных лампах, рентгеновских трубках и т.п. Вследствие тугоплавкости и большой механической прочности, вольфрам может работать при высоких температурах (более 2000°С), но лишь в глубоком вакууме или в атмосфере инертного газа, т.к. при нагревании до температуры в несколько сот градусов в присутствии кислорода он сильно окисляется.
2.7.2. Молибден
Этот металл по внешнему виду, а также по технологии обработки близкий к вольфраму. Важнейшей промышленной рудой молибдена является молибденит MoS2. Молибден применяют в электровакуумной технике при менее высоких температурах, чем вольфрам; накаливаемые детали из молибдена должны работать в вакууме или восстановительной атмосфере.
2.7.3. Тантал
Его получают из мало распространенной руды – танталита Fe(TaO3)2 методами порошковой металлургии, подобно вольфраму и молибдену. Основное отличие его заключается лишь в том, что процесс спекания его осуществляют в вакуумных печах, т.к. тантал склонен к поглощению газов, в результате чего он становится хрупким. Тантал характеризуется высокой пластичностью даже при комнатной температуре. Тантал относят к сверхпроводникам, применяют при изготовлении анодов и сеток генераторных ламп и др.
2.7.4. Титан
Относительно легкий металл, применяющийся в электровакуумной технике благодаря своим хорошим механическим свойствам. Основными минералами, содержащими титан, являются рутил и ильмений. Получают титан методами порошковой металлургии. Его используют не только в качестве конструкционного материала, но и для порошкообразных покрытий молибденовых и вольфрамовых анодов и сеток генераторных ламп. Из него также получают резисторы интегральных микросхем.
2.7.5. Рений
Один из редких очень тяжелых металлов, с температурой плавления, близкой к вольфраму. Рений отличается редким сочетанием свойств, удовлетворяющих большинству требований электровакуумной техники. В атмосфере водорода и во влажной среде он испаряется в меньшей степени, чем вольфрам. Ценной особенностью рения является его меньшая, по сравнению с вольфрамом, степень взаимодействия при высоких температурах с окисью алюминия, из которой изготовляют изоляционные трубки подогревных катодов прямого накала и сеток некоторых типов ламп.