Отчет ETR 139, составленный в 1994 году [37], отражает мнение ETSI о применении радиотехнического оборудования в абонентских сетях. За четыре года, прошедшие между публикацией отчета [37] и завершением работы над этой монографией, произошли определенные изменения в теории и практике использования радиотехнических средств в сетях абонентского доступа. Последние достижения в этой области я попытался отразить в разделе 2.5, но читателю, желающему получить более полную информацию, целесообразно обратить внимание на список литературы, приведенный в конце второй главы монографии.
Основные положения, сформулированные в [37], не потеряли своей актуальности. Это объясняется рядом причин. Во-первых, ряд вопросов касается фундаментальных положений развития сетей абонентского доступа с использованием различных радиотехнических средств. Во-вторых, российская телекоммуникационная система на определенное время “опаздывает” с внедрением последних достижений науки и техники. С этой точки зрения решения, принятые в Европе в 1994 году, нельзя считать “устаревшими” для российских Операторов связи.
Концептуальные положения, разработанные ETSI в отчете [37], объединены общим названием RLL (Radio in the Local Loop). В разделе П.7 будет использоваться именно эта аббревиатура. Эталонная модель, используемая авторами концепции RLL, представлена на рисунке П.9, который иллюстрирует самые общие принципы применения радиотехнических средств в сети абонентского доступа.
Эталонная модель для концепции RLL
Рисунок П.9
МС, в контексте данной модели, следует рассматривать как коммутационную станцию стационарной сети электросвязи, которая выполняет функции сопряжения с радиотехническим оборудованием сети абонентского доступа. Следовательно, МС может быть оконечной станцией ТФОП, узлом сети ПД, устройством для установления полупостоянных соединений (арендованных каналов и трактов) и тому подобное.
Контроллер обеспечивает подключение системы RLL к МС, что необходимо для решения технологической задачи - обслуживания вызовов. Для выполнения задач, касающихся функций технической эксплуатации, контроллер использует соответствующие средства, обозначенные на рисунке П.9 блоком NMA. Этот блок связан с системой технической эксплуатации (O&M).
Базовая станция BS содержит радиотехническое оборудование, обеспечивающее прием и передачу информации, включая сообщения для системы сигнализации, по эфиру. В состав BS входят также средства, необходимые для измерений и технического обслуживания системы RLL.
Радийное окончание выполняет функции, касающиеся поддержки терминалов ТФОП, ЦСИО и арендованных линий. Оно может использоваться для включения нескольких терминалов. Если необходимо подключить всего один терминал, то функции радийного окончания существенно упрощаются.
Интерфейс I/F1 определяет принципы сопряжения системы RLL со стационарной сетью электросвязи. Через этот интерфейс осуществляется обмен информацией между МС и контроллером. Последний “общается” со средствами эксплуатационного контроля и управления через интерфейс I/F2.
Интерфейс I/F3 используется для подключения BS (одной или нескольких) к контроллеру системы RLL. Через данный интерфейс передается информация, связанная с обработкой вызова, управлением частотными ресурсами, техническим обслуживанием оборудования и, при необходимости, поддержкой функции мобильности терминалов.
Подключение радийного окончания (одного или нескольких) к одной или более BS осуществляется через интерфейс I/F4. Передаваемая через данный интерфейс информация подобна той, что была указана в предыдущем абзаце. Интерфейс I/F4, кроме того, предусматривает передачу сообщений, формируемых в процессе наблюдения за оборудованием радийного окончания.
Интерфейс I/F5 определяет характеристики в точке подключения терминалов к системе RLL. В качестве используемых терминалов в [37] акцентируется внимание на стандартные ТА, оконечное оборудование ЦСИО и устройства, работающие по арендованным каналам и трактам. Это означает, что интерфейс I/F5 будет, как правило, совпадать с одним из стандартных стыков, специфицированных в рекомендациях МСЭ серий I, Q и V. Информация, необходимая системе технической эксплуатации, передается через интерфейс I/F6.
Активное использование оборудования, соответствующего системе RLL, объясняется рядом факторов, среди которых экономические соображения играют для Оператора важнейшую роль. В [37] указано, что перед авторами отчета не ставилась задача расчета экономически выгодных вариантов применения системы RLL. Тем не менее, некоторые весьма полезные, с точки зрения экономики, оценки приводятся при анализе основных вариантов развития сетей связи на базе радиотехнического оборудования.
Один из таких вариантов (рисунок П.10) иллюстрирует принципы организации связи в пригородной зоне, в пределах которой ведется новое строительство. Площадь новой застройки, которая удалена от города на расстояние от одного до пяти километров, ограничена радиусом 500 метров. Подключение терминального оборудования потенциальных абонентов ГТС осуществляется через ближайшую МС.
Организация связи в пригородной зоне (новое строительство)
Рисунок П.10
Структура, показанная на рисунке П.10, считается авторами отчета [37] одной из характерных моделей, представляющих как одно из направлений в развитии ТФОП, так и возможную сферу применения системы RLL. Мне представляется полезным привести еще несколько чисел, использованных в [37] для расчета сети:
- поверхностная плотность размещения потенциальных абонентов находится в диапазоне от 500 до 2000 на один квадратный километр;
- средняя интенсивность трафика составляет порядка 0,07 Эрл;
- доля пользователей ЦСИО (включая оба вида доступа) может достигать 5% от общего числа абонентов;
- время полного завершения работ по созданию сети связи (до телефонизации последнего дома) равно одному году.
Все перечисленные выше оценки могут быть полезны Оператору для решения подобных задач. Если исходные данные аналогичны приведенным выше, то можно, в качестве отправной точки, воспользоваться результатами отчета [37]. Если же какие-либо величины существенно различаются между собой (характерный пример для многих регионов России - более широкий разброс возможных значений поверхностной плотности размещения абонентов), то результатами отчета [37] необходимо пользоваться очень осторожно.
Одним из самых главных рынков для системы RLL считается сельская связь. Соответствующая модель показана на рисунке П.11, который без изменений взят из [37]. В качестве характерной сельской местности в отчете ETSI названа область с холмами и лесами, жители которой распределены по территории очень неравномерно. Примерно 90% потенциальных абонентов находятся в радиусе 4 км от МС, которая, естественно, установлена в главном населенном пункте данной местности. Остальные 10% потенциальных абонентов живут в пределах кластеров, распределенных так, как это показано для рассматриваемой модели.
Организация связи в сельской местности
Рисунок П.11
Характеристики телекоммуникационных услуг, которые необходимые абонентам в сельской местности, могут быть представлены следующим образом:
- телефонная связь с таким качеством, которое свойственно стационарной ТФОП;
- дополнительные услуги ТФОП, обеспечиваемые при использовании терминалов с частотным набором номера, которые включены в цифровые коммутационные станции;
- передача и прием факсимильных сообщений с использованием терминалов третьей группы (со скоростью до 9,6 кбит/с);
- обмен данными с использованием модемов на скоростях до 9,6 кбит/с включительно;
- отсутствие спроса на услуги ЦСИО в течение 10 лет с момента ввода системы в коммерческую эксплуатацию.
Параметры трафика для абонентов, проживающих в сельской местности, аналогичны тем, что определены для предыдущей модели. Вероятность отказа в обслуживании, определяемая, в основном, вероятностью занятости всех радиоканалов, составляет 1%, что превышает допустимые потери для абонентов стационарной телефонной сети.
Одно из характерных направлений в развитии систем RLL состоит в максимально возможном сближении их сервисных возможностей с тем уровнем, который свойственен стационарным сетям электросвязи. Такая идея прослеживается в концепциях DECT и UMTS, кратко рассмотренных в последнем разделе второй главы монографии.
В [37] приводятся примеры поддержки современных услуг в сетях связи, использующих радиотехническое оборудование. На рисунке П.12 воспроизведен вариант подключения терминалов ЦСИО, основанный на технологии DECT.
Эталонная конфигурация ЦСИО
Рисунок П.12
По сравнению с традиционными моделями, представляющими эталонную конфигурацию ЦСИО, рисунок П.12 содержит два новых элемента - Адаптер и Систему управления. Адаптер преобразует последовательность битов на входе (выходе) УПАТС в сигнал, который соответствует параметрам, предусмотренным стандартом DECT. Обратное преобразование плюс ряд процедур, выполняемых Системой управления, обеспечивают на входе МС такое представление потока битов, которое определено для интерфейса V в концепции ЦСИО.