Как уже отмечалось, при понижении температуры удельное сопротивление металлов падает. Представляет особый интерес вопрос об электропроводности металлов при весьма низких температурах, приближающихся к абсолютному нулю. Исчезновение электрического сопротивления, т.е. появление практически бесконечной электрической проводимости материала, называется сверхпроводимостью, а температура, при охлаждении до которой совершается переход вещества в сверхпроводящее состояние – температурой сверхпроводникового перехода Тс. Переход в сверхпроводящее состояние является обратимым: при повышении температуры до Тс сверхпроводимость разрушается и материал переходит в нормальное состояние, приобретая конечное значение удельной проводимости γ. В настоящее время известно 27 простых (чистых металлов) и более тысячи сложных (сплавов и химических соединений).
В то же время некоторые вещества, в том числе такие наилучшие проводниковые материалы, как серебро и медь, при наиболее низких, достигнутых в настоящее время температурах (порядка тысячных долей Кельвина; согласно третьему закону термодинамики, абсолютный нуль температуры принципиально недостижим) перевести в сверхпроводящее состояние не удалось. Интересно отметить, что сверхпроводниками могут быть не только соединения и сплавы металлов, обладающих сверхпроводимостью, но и соединения таких элементов с несверхпроводящими и даже соединения, в состав молекул которых входят исключительно атомы элементов, не являющихся сверхпроводящими.
Помимо сверхпроводящих электромагнитов можно отметить возможности использования сверхпроводников для создания электрических машин, трансформаторов и тому подобных устройств малой массы и габаритов, но с высокими к.п.д.; линий электропередачи весьма больших мощностей на дальние расстояния; волноводов с особо малым затуханием; накопителей энергии и пр.
Помимо явления сверхпроводимости в современной электротехнике все шире используется явление криопроводимости, т.е. достижение некоторыми металлами весьма малой удельной проводимости при криогенных температурах (но более высоких, чем температура сверхпроводникового перехода, если данный металл вообще принадлежит к сверхпроводникам. Материалы, обладающие особо благоприятными свойствами для применения в качестве проводников в условиях криогеннных температур, называются криопроводниками или гиперпроводниками.
Весьма малое, но все же конечное значение удельного сопротивления криопроводника при его рабочей температуре ограничивает допустимую плотность тока в нем, хотя эта плотность может быть намного выше, чем в обычных проводниках. Криопроводники, у которых при изменении температуры в широких пределах удельное сопротивление изменяется плавно, без скачков, не могут использоваться в ряде устройств, действие которых основано на триггерном эффекте появления и разрушения сверхпроводимости. Однако применение криопроводников в электрических машинах, аппаратах, кабелях и т.п. имеет и свои преимущества, притом весьма существенные. Так, если в сверхпроводниковых устройствах в качестве охлаждающего агента применяется жидкий гелий, рабочая температура криопроводников достигается применением более высококипящих и дешевых хладоагентов: жидкого водорода или даже жидкого азота. Это значительно упрощает и удешевляет выполнение и эксплуатацию устройства. Кроме того, в сверхпроводниковом устройстве, например электромагните, по обмотке которого проходит сильный ток, накапливается большая энергия магнитного поля. Если из-за случайного повышения температуры или магнитной индукции хотя бы на малом участке сверхпроводящего контура сверхпроводимость будет разрушена, внезапно освободится большое количество энергии, что может вызвать серьезную аварию. В случае же криопроводниковой цепи повышение температуры вызовет лишь постепенное возрастание сопротивления этой цепи без эффекта взрыва.
Во всех случаях для получения криопроводниковых материалов требуется высокая чистота металла и отсутствие наклепа. Вредное влияние примесей и наклепа на ρ металлов при криогенных температурах сказывается намного сильнее, чем при нормальных. Криопроводники могут с успехом использоваться для обмоток электрических машин и трансформаторов, для токопроводящих жил кабелей и т.п.