Ранее рассматривались переходные процессы в RL- и -цепях, которые относятся к цепям первого порядка, так как описываются дифференциальными уравнениями первого порядка (6.11), (6.23). При наличии в цепи двух независимых накопителей энергии переходные процессы в них описываются уравнением второго порядка. Простейшим примером такой цепи является последовательный колебательный контур (рис. 6.11).

Для этого контура можно по аналогии с RL- и -цепью составить дифференциальное уравнение второго порядка, выбрав в качестве независимой переменной напряжение на емкости

Учитывая, что i = CduC/dt окончательно получаем (6.37)

Решение дифференциального уравнения (6.37) ищется согласно (6.5) в форме суммы свободной uCсв и принужденной uCпр составляющих: (6.38)

Вид uCпр зависит от характера приложенного напряжения, а uCсв определится решением однородного дифференциального уравнения второго порядка: (6.39)

Решение уравнения (6.39) зависит от вида корней характеристического уравнения (6.40)

Корни уравнения (6.40) определяются только параметрами цепи независимо от выбранной переменной: (6.41)

Величина a = R/2L носит название коэффициента затухания контура, а есть резонансная частота контура (см. § 4.2). Таким образом, уравнение (6.41) можно переписать в виде (6.42)

Характер переходного процесса существенным образом зависит от вида корней р1, р2, которые могут быть: 1) вещественными и различными (при R > 2); 2) комплексно-сопряженными (при R < 2); 3) вещественными и равными (при R = 2).

Здесь = — характеристическое сопротивление контура (см. формулу (4.22)).

Разряд емкости на RL-цепь

Для исследования характера переходного процесса во всех этих случаях рассмотрим разряд емкости С на цепь RL (см. рис. 6.11). Так как до коммутации емкость С была заряжена до напряжения U, то имеем ненулевые начальные условия:

После коммутации (переключение ключа К из положения 1 в положение 2 емкость начнет разряжаться и в цепи возникнет свободный переходный процесс. Найдем закон изменения тока и напряжений на отдельных элементах цепи для случая 1)—3).

В первом случае, когда R > 2, корни p1 и р2 в (6.41) будут вещественными и различными, и решение уравнения определится согласно (6.7): (6.43) где A1 и A2 — постоянные интегрирования. Для определения A1 и A2 запишем еще уравнение для тока в цепи: (6.44)

Постоянные A1 и A2 можно найти из начальных условий для uC(0) = U и i(0) = 0 (при t = 0) и законов коммутации (6.1), (6.2): (6.45)

Из решения системы уравнение (6.45)

В результате получаем уравнения для напряжения UC и тока i: (6.46) (6.47)

Закон изменения напряжения на индуктивности определяется при этом уравнением (6.48)

Из уравнений (6.46)—(6.48) следует, что каждая из найденных величин uC, i, uL состоит из двух слагаемых, затухающих по экспоненте с коэффициентами p1 < 0 и p2 < 0. На рис. 6.12 показан характер зависимостей (6.46)—(6.48). Момент времени t1, соответствующий точке перегиба uC, максимуму | i | и нулевому значению uL определяется из решения уравнения di / dt = 0, а момент t2 из решения уравнения duL / dt = 0: (6.49)

Анализ полученных кривых показывает, что в рассматриваемом случае происходит апериодический разряд емкости С, причем в интервале от 0 до t1 энергия WC расходуется на покрытие тепловых потерь в резистивном сопротивлении R и создание магнитного поля в индуктивности ( pC = uC i < 0; pL = uL i > 0). В дальнейшем (при t > t1) как энергия электрического поля емкости WC, так и запасенная к моменту t = t1 магнитная энергия индуктивности WL расходуется на покрытие тепловых потерь в сопротивлении R. Отрицательное значение тока свидетельствует о противоположном направлении тока разряда относительно опорного направления.

Во втором случае при R < 2, когда корни p1 и p2 носят комплексно-сопряженный характер, (6.50) где называют частотой собственных затухающих колебаний. Решение уравнения (6.39) имеет вид (6.9) (6.51) где A и — постоянные интегрирования. Закон изменения тока в цепи (6.52)

Постоянные A и определяются из начальных условий для uC и i и законов коммутации (6.1), (6.2): (6.53)

Отсюда

Окончательно уравнения для uC, i и и принимают вид (6.54) (6.55) (6.56)

Полученные уравнения показывают, что в данном случае имеет место колебательный разряд емкости с частотой с, зависящей только от параметров R, L, С цепи. Интервал времени Тc = 2/с носит название квазипериода. На рис. 6.13 изображены графики зависимостей uC(t) и i(t) определяемых уравнениями (6.54) и (6.55). Скорость затухания периодического процесса принято характеризовать декрементом затухания, который определяют как отношение двух соседних амплитуд тока или напряжения одного знака (см. рис. 6.13): (6.57)

На практике чаще используется логарифмический декремент затухания (6.58)

Из уравнений (6.57) и (6.58) следует, что затухание тем больше, чем больше R. При R = 2 колебания прекращаются и переходной процесс становится апериодическим. При R = 0 оказываются незатухающие гармонические колебания с частотой с = 0 = . Очевидно, что этот случай представляет чисто теоретический интерес, так как в любом реальном контуре имеются потери. В процессе колебательного разряда емкости (свободных колебаний в RLC-контуре) имеет место попеременное запасание энергии WC в электрическом поле емкости и магнитном поле индуктивности WL: в начале энергия WC расходуется на создание магнитного поля WL индуктивности и покрытие тепловых потерь сопротивления R, затем запасенная энергия WL, расходуется на перезаряд емкости и покрытие потерь в R и т. д. до полного перехода первоначальной энергии Wc(0) в тепловые потери в резисторе R.

Третий случай R = 2 является пограничным между колебательным и апериодическим и соответствует критическому разряду емкости. Решение уравнения (6.39) при этом имеет вид (6.8) (6.59)

Ток определяется уравнением (6.60) где p1 = p2 = p = -a — корни характеристического уравнения (6.40); А1, А2 — постоянные интегрирования, определяемые из начальных условий для uC и i и законов коммутации (6.1), (6.2):

Отсюда А2 = aU. Окончательные выражения для напряжения и тока принимают вид (6.61) (6.62) (6.63)

По своей форме графики зависимостей (6.61)—(6.63) аналогичны кривым, изображенным на рис. 6.12 с той лишь разницей, что их скорость изменения больше, чем при R > 2. Значение R = 2 носит название критического сопротивления контура.