Комплексная спектральная плотность непрерывного сигнала (в дальнейшем для краткости будем говорить: спектр сигнала) вычисляется по формуле прямого преобразования Фурье

. (3)

Сигнал может быть восстановлен по спектру с помощью обратного преобразования Фурье, или интеграла Фурье

. (4)

В соответствии с принципом неопределенности сигнал, имеющий ограниченную протяженность во времени, обладает неограниченным по полосе спектром (рис. 9, а). И наоборот, сигнал с ограниченным спектром имеет бесконечную протяженность во времени (рис. 10, а). Как следует из этих рисунков, непрерывный сигнал, и ограниченной и бесконечной протяженности во времени, имеет сплошной спектр.

Если сигнал является периодическим, то спектр его – дискретный, т.е. теперь вместо используют отсчеты . Эта ситуация показана на рис. 9, б. Период сигнала равен длительности сигнала . Интервал дискретизации спектра по частоте F определяется, как известно, периодом сигнала, в данном случае . Формулы для прямого и обратного преобразований Фурье получаются из (3) и (4) путем замены непрерывной частоты f на дискретные значения nF. При этом следует учесть известную связь между амплитудами гармоник периодического сигнала и отсчетами спектральной плотности непрерывного сигнала:

Рис. 9

Рис. 10

.

Спектр периодического сигнала вычисляется по формуле

. (5)

Сигнал можно восстановить по его дискретному спектру, воспользовавшись формулой

. (6)

В соответствии с принципом дуальности можно сказать: если периодическим является спектр, то дискретным будет сигнал (рис. 10, б). Обозначая период повторения спектра , получим интервал дискретизации сигнала .

Формулы прямого и обратного преобразований Фурье для дискретных сигналов имеют вид

; (7)

. (8)

В формулах (7) и (8) использовано обозначение .

Пример 4.1. Рассчитаем спектр дискретного сигнала, состоящего из одного отсчета .

Воспользуемся формулой (7), в которую подставим значения заданного сигнала

.

Пример 4.2. Рассчитаем спектр экспоненциальной дискретной функции , n³ 0.

График дискретной функции приведен на рис. 11, а ее отсчеты можно записать в виде последовательности {1; 0,5; 0,25; 0,125; 0,0625; ...}.

Рис. 11

Рис. 12

Спектр дискретной экспоненты рассчитаем по формуле (7)

где для суммирования ряда использована формула

.

Получим выражение для расчета спектра амплитуд , используя формулу Эйлера .

.

Для построения графика будем задавать значения f от 0 до 1/Т с шагом 0,1/T и рассчитывать .

График спектра амплитуд экспоненциальной дискретной функции приведен на рисунке 12.

Как видно из графика, спектр дискретного сигнала сплошной и периодический с периодом .

Самоконтроль

1. Как рассчитывается спектр непериодического (и периодического) непрерывного сигнала?

2. Как восстановить непрерывный сигнал по его спектру (сплош­ному и дискретному)?

3. Сформулируйте принцип неопределенности.

4. Как рассчитывается спектр дискретного сигнала?

5. Какой спектр у дискретного сигнала: сплошной или дискретный, периодический или непериодический?

6. Как рассчитывается дискретный сигнал, если известен его спектр?

7. Найдите спектр дискретного сигнала, состоящего из одного отсчета .

8. Найдите значения спектра дискретного сигнала, заданного двумя отсчетами , на частотах и .