Задача 1.
Дана система трёх линейных уравнений. Найти решение её методом Крамера.
2x + 3y + z = 1
- x + 4y + 2z = - 1
x - 2z - 3z = - 3
Решение.
Запишем формулы Крамера: ; ; .
Здесь: D - определитель системы;
D x – определитель, полученный из определителя системы заменой первого столбца на столбец свободных членов;
D y - определитель, полученный из определителя системы заменой второго столбца на столбец свободных членов;
D z – определитель, полученный из определителя системы заменой третьего столбца на столбец свободных членов.
В нашем случае имеем:
.
.
.
.
Теперь найдем значения неизвестных:
; ; .
Для проверки подставим найденные значения неизвестных в исходную систему и убедимся в правильности решения.
Задача 2.
Даны координаты вершины пирамиды . Сделать
- длину ребра .
- угол между ребрами и
- площадь грани
- уравнение прямой
- уравнение плоскости
- объем пирамиды
,, ,
Решение:
1) Длина ребра равна расстоянию между точками и или модулю
вектора . Расстояние между точками и вычисляется по формуле .
Подставляя в эту формулу исходные данные, получим
2) Угол между ребрами будем искать, используя формулы векторной алгебры:
В нашем случае , .
Чтобы найти координаты вектора, из координат конца вектора следует вычесть координаты начала вектора. Таким образом,
3) Площадь треугольника можно найти, используя свойства скалярного произведения: площадь параллелограмма, построенного на векторах и численно равна модулю их векторного произведения.
В нашем случае,
==
=
Имеем,
Итак, площадь грани
4) Уравнение прямой найдем как канонические уравнения прямой в пространстве:
,
где - координаты направляющего вектора прямой, а - координаты точки прямой. В нашем случае , а в качестве точки .
Итак, уравнение прямой имеет вид:
.
В общем виде:
или
5) Уравнение плоскости будем искать как уравнение плоскости, проходящей через три данные точки , и :
,
,
.
Упрощая, получим: .
6) Объем пирамиды найдем, используя свойство смешанного произведения трех векторов – модуль смешанного произведения численно равен объему параллелепипеда, построенного на этих векторах. Соответственно
.
Найдем смешанное произведение векторов , и:
Ответы:
- длина ребра равна (ед.)
- угол между ребрами и равен
- площадь грани равна 11.58 (кв. ед.)
- уравнение прямой (в каноническом виде ):
- уравнение плоскости (в общем виде):
- объем пирамиды равен 11 (куб. ед.).