2.1. Понятие случайной величины
Случайной величиной называется величина, которая в результате испытаний принимает то или иное значение.
- Опыт бросания монеты 2 раза {ГГ, ГР, РГ, РР}
- Бросание кубика
- Схема Бернулли – число успехов в испытаниях
- Стрельба по мишени, – расстояние от точки попадания до центра
- Группа из человек, – число мальчиков
- – время до отказа одного прибора
- – вес случайного студента
Дискретные случайные величины – это величины, которые могут принимать конкретное или счетное число значений.
Непрерывные случайные величины – это величины, которые могут принимать несчетное множество значений.
2.2. Дискретные случайные величины
Закон распределения есть соответствие между значениями случайных величин и их вероятностями.
Может задаваться:
1. Таблично
2. Графически
3. Аналитически
1. Таблично
10 |
20 |
30 |
|
0,5 |
0,2 |
0,3 |
- ряд распределения
В общем виде:
… |
|||||
… |
Свойства ряда распределения:
– условие нормировки
Пример:
В 2-х бросаниях монеты: – число "гербов"
0 |
1 |
2 |
|
2. Графически
3. Аналитически
Пусть – испытаний
– число успехов
0 |
… |
… |
|||
… |
… |
Функция распределения
Свойства функции распределения:
- – не убывающая функция
- – непрерывна слева
Пусть задан ряд распределения
Числовые характеристики дискретных случайных величин.
-
- Математическое ожидание – среднее значение
Пример:
0 |
1 |
3 |
|
0,1 |
0,4 |
0,5 |
-
- Дисперсия
Дисперсия характеризует разброс значений случайной величины от её математического ожидания.
Пример:
0 |
1 |
2 |
|
0 |
1 |
2 |
|
- Среднеквадратическое отклонение (СКО)