Обеспечение полноценной световой среды в жилых помещениях. Стремительно растущая урбанизация изменяет интенсивность и спектральный состав важнейшего фактора среды обитания человека – солнечной радиации у поверхности земли – вследствие загрязнения атмосферного воздуха, снижающего его прозрачность, и существенного затенения территории плотной многоэтажной застройкой. Ограниченная прозрачность остекления светопроемов, их затеняемость, а зачастую несоответствие размеров площади окон глубине помещений вызывают повышенный дефицит естественного света в помещениях. Недостаток естественного света ухудшает условия зрительной работы и создает предпосылки для развития у городского населения синдрома “солнечного (или светового) голодания”, снижающего устойчивость организма к воздействию неблагоприятных факторов химической, физической и бактериальной природы, а по последним данным и к стрессовым ситуациям. Поэтому дефицит естественного света и денатурация световой среды отнесены к факторам, неблагоприятным для жизнедеятельности человека.

В больших городах особое значение имеет качество световой среды внутри помещения, где человеку должен быть обеспечен не только зрительный комфорт, но и необходимый биологический эффект от освещения. Последний определяется в основном условиями освещения помещений естественным светом, под которым понимается рассеянный свет небосвода, проникающий через светопроемы, и прямыми солнечными лучами (инсоляцией). Эти природные факторы должны присутствовать в достаточном количестве в каждом помещении, предназначенном для длительного пребывания человека, и, прежде всего в помещениях жилых зданий.

Естественное освещение и инсоляция. В закрытых помещениях световая среда существенно денатурирована, а естественные оптические факторы ослаблены, так как светопроемы составляют относительно небольшую часть ограждений, пропуская около 50% падающего на них света и лишь незначительную долю ультрафиолетового излучения. Затенение светопроемов и ориентация части их на северные румбы горизонта приводит к дополнительной потере естественного света и инсоляции, а также к увеличению времени пребывания людей при искусственном освещении.

Для обеспечения полноценной световой среды в жилых зданиях действующими нормами и правилами регламентируются минимальная величина коэффициента естественной освещенности (к.е.о.), режим и длительность инсоляции.

В соответствии с требованиями СниП 11-4-79 “Естественное и искусственное освещение. Нормы проектирования” величина к.е.о. для основных помещений жилых зданий (комнат и кухонь) в средней светоклиматической полосе установлена не ниже 0,4% для зон с устойчивым снежным покровом и не ниже 0,5% - для остальной территории. Снижение к.е.о. в комнатах и кухнях жилых зданий не допускается. Это требование обусловлено особой биологической значимостью естественного света в помещениях и невозможность восполнения его дефицита современными средствами искусственного освещения. Накопленные данные свидетельствуют о влиянии видимого света на биосинтез гормонов, о прямом воздействии фотонов на нервные окончания, приводящем к активизации метаболических процессов и регуляции функций организма, о роли поглощенных фотонов в биоэнергетическом обеспечении организма и репарации тканей, фотореактивирующем и фотосенсибилизирующем влиянии света, значении качества света для поддержания биоритмов организма.

Наряду с общебиологическим влиянием естественное освещение оказывает выраженное психологическое воздействие на организм человека. Свободный зрительный контакт с внешним миром через светопроемы достаточного размера и изменчивость дневного освещения (колебания интенсивности, равномерности, соотношений яркости, хроматичности света на протяжении дня) оказывают большое влияние на психику человека. Поэтому с гигиенической точки зрения в зданиях разного назначения необходимо предусматривать максимально возможное использование естественного освещения. Если в помещениях, предназначенных для длительного пребывания людей, обеспечить достаточное естественное освещение невозможно, то следует упорядочить дневной режим этих людей, установив для них время периодического пребывания под открытым небом в часы с достаточным естественным освещением (например, в обеденный перерыв или путем смещения графика работы).

Большое внимание уделяется в последнее время проблеме инсоляции жилых зданий. Инсоляция – это важный гигиенический фактор, она обеспечивает поступление в помещение дополнительной световой энергии, тепла и ультрафиолетового излучения Солнца, влияет на самочувствие и настроение человека, микроклимат жилища и снижение его обсемененности микроорганизмами. Опрос больших групп населения показал положительное отношение к инсоляции жилых и общественных помещений у людей, проживающих как в северных и центральных, так и в южных районах Российской Федерации. Параллельно проведенное изучение психофизического состояния части опрошенных выявило улучшение их работоспособности, самочувствия и настроения в хорошо инсолируемых помещениях.

Комплексный анализ данных гигиенической оценки инсоляции показал, что благоприятное влияние на организм человека и на внутреннюю среду помещений инсоляция оказывает при непрерывном трехчасовом воздействии.

Однако стремление градостроителей к увеличению плотности застройки жилых районов и повышению этажности жилых и административных зданий приводит к уменьшению длительности инсоляции и к прерывистости солнечного облучения помещений, что снижает оздоровительное действие инсоляции, прежде всего ее бактерицидный эффект.

Совмещенное освещение. Дефицит естественного освещения в ряде помещений жилых и общественных зданий требует комплексного решения проблемы его восполнения искусственным освещением, в частности с помощью системы совмещенного освещения.

Основной гигиенический недостаток применения совмещенного освещения обусловлен разной биологической эффективностью естественного и искусственного света, которая не в полной мере учитывается при нормировании освещения.

Сравнительная гигиеническая оценка степеней денатурации световой среды, создававшихся разными соотношениями естественного и искусственного света в комплексном световом потоке 1:1, 1:2, 1:5, показала, что даже при относительно высокой суммарной интенсивности освещения – от 300 до 1000 лк – замена части естественного света искусственным (от люминесцентных ламп с Тцв= 3600 К) отражается на состоянии человека и утяжеляет выполнение зрительной и умственной работы. Особо неблагоприятное влияние оказывает дефицит естественного света в тех случаях, когда его доля составляет менее 200 – 250 лк.

Неблагоприятное воздействие на организм замены естественного света искусственным подтверждается и данными биологических экспериментов по изучению иммунологической реактивности животных и их устойчивости к химической нагрузке, а также данными о фотореактивирующем действии света на одноклеточные микроорганизмы. Полученные результаты позволили показать биологическую неадекватность естественного и искусственного света одинаковой интенсивности. Для обеспечения биологического эффекта от искусственного освещения, соизмеримого с биологическим эффектом естественного света при освещенности в 500 лк, необходимо повысить освещенность не менее чем до 2000 – 2500 лк при максимальном приближении спектрального состава искусственного света к естественному. Однако это нерационально ни с экономической, ни с гигиенической позиций.

Совмещенное освещение должно улучшать положение в тех помещениях, в которых по разным причинам (строительным, эксплуатационным и т.п.) не может быть обеспечено удовлетворительное дневное освещение. Во вновь проектируемых жилых зданиях следует изыскивать возможности полноценного естественного освещения.

В том случае, когда дневное освещение постоянно дополняется общим или комбинированным искусственным, большое значение имеет выбор источников света и светильников, а также их размещение в помещении. При совмещенном освещении нельзя применять лампы накаливания. Для этого целесообразно использовать люминесцентные лампы белого и дневного света, выбираемые с учетом ориентации помещения, а на крупных общественных объектах (вокзалы, спортивные залы и т.п.) – ртутные лампы высокого давления. Размещение и тип светильников должен обеспечивать автономный подсвет зоны с недостаточным естественным освещением и однонаправленность теней.

Искусственное освещение помещений в жилых зданиях. Основные гигиенические требования к искусственному освещению в быту сводятся к тому, чтобы освещение интерьеров соответствовало их назначению: света было достаточно (он не должен слепить и оказывать иного неблагоприятного влияния на человека и на среду); осветительные приборы были легко управляемыми и безопасными, а их расположение способствовало функциональному зонированию жилища; выбор источников света производится с учетом восприятия цветового решения интерьера, спектрального состава света и благоприятного биологического воздействия светового потока.

До настоящего времени в жилых помещениях целесообразным с гигиенической точки зрения считается применение светильников с лампами накаливания как более удобных в эксплуатации, легко регулируемых, бесшумных и неизлучающих ультрафиолетового потока. Экономичные люминесцентные светильники рекомендуется использовать в основном для освещения вспомогательных помещений с кратковременным пребыванием людей (прихожей, ванной и т.п.). Установка их в кухнях требует применения спектрального типа ламп, точно передающего естественный вид продукта. При освещении люминесцентными светильниками, например, письменного стола, необходимо наряду с правильным подбором спектрального типа ламп устранение пульсации их светового потока.

Обогащение светового потока установок искусственного освещения ультрафиолетовым излучением. Проблема обогащения искусственного света ультрафиолетовым излучением (УФИ) весьма актуальна в настоящее время, когда денатурация световой среды в городах и увеличение времени пребывания человека в условиях искусственного освещения требуют широкой профилактики возможного развития симптомов светового голодания у людей, сопровождающихся снижением резистентности организма к воздействию неблагоприятных факторов и повышением заболеваемости. Наиболее удобным и эффективным приемом профилактики светового голодания является использование в системе общего освещения помещений с длительным пребыванием людей светооблучательных установок, создающих световой поток, обогащенный УФИ. При этом может использоваться двойная система ламп – осветительных и эритемных, излучающих УФ – поток в диапазоне длин волн 280 – 320 нм, или единая система – с полифункциональными осветительно-облучательными лампами, генерирующими одновременно видимый свет и УФИ (спектр их излучения охватывает область 280 – 700 нм), которые обеспечивают получение человеком за 8 часов рабочего дня 0,125 – 0,25 МЭД (минимальной эритемной дозы) при освещенности 300 – 500 лк. Эритемные лампы в системе общего освещения обеспечивают 0,25 – 0,75 МЭД в день и используются лишь в осенне-зимний период года. Суммарная годовая доза УФИ как от эритемных, так и от полифункциональных ламп составляет около 65 МЭД.

Гигиеническая оценка светооблучательных установок показала их благотворное влияние на фосфорно-кальциевый обмен в организме, состояние естественного неспецифического иммунитета и работоспособность, а также отсутствие неблагоприятного влияния УФИ на зрительные функции человека и на среду в помещении. Специальные исследования показали также отсутствие опасности возникновения неблагоприятных отдаленных последствий ультрафиолетового облучения в субэритемных дозах.

Обогащение искусственного света УФИ рекомендуется прежде всего в районах с выраженным дефицитом естественного УФИ (севернее 57,5° северной широты, а также в промышленных городах с загрязненным атмосферным воздухом, расположенных в зоне 57,5 – 42,5° северной широты) и на подземных объектах, в зданиях без естественного света и с выраженным дефицитом естественного света (при к.е.о. менее 0,5%) вне зависимости от их территориального размещения.

Шумы в жилой среде: источники, влияние на организм и меры защиты. Защита городской и жилой среды от шума имеет большое гигиеническое и социально-экономическое значение, что связано с повсеместным ростом шумового загрязнения, вызывающего ухудшение состояния здоровья населения.

Существующие источники шума в условиях городской жилой среды можно подразделить на две основные группы: расположенные в свободном пространстве (вне зданий) и находящиеся внутри зданий.

Источники шума, расположенные в свободном пространстве, по своему характеру делятся на подвижные и стабильные, т.е. постоянно или долговременно установленные в каком-либо месте.

Для источников шума, расположенных внутри зданий, имеют значение характер размещения источников шума по отношению к окружающим защитным объектам и их соответствие предъявляемым к ним требованиям. Внутренние источники шума можно подразделить на несколько групп:

  • техническое оснащение зданий (лифты, прачечные, трансформаторные подстанции, теплообменные станции, воздухотехническое оборудование и т.п.);
  • технологическое оснащение зданий (морозильные камеры магазинов, машинное оборудование небольших мастерских и т.п.);
  • санитарное оснащение зданий (водопроводные сети, сети для распределения теплой воды, водопроводные краны, смывные краны туалетов, душевые и т.п.);
  • бытовые приборы (холодильники, пылесосы, миксеры, стиральные машины, одиночные агрегаты отопления этажей и др.);
  • аппаратура для воспроизведения музыки, радиоприемники и телевизоры, музыкальные инструменты.

В последние годы отмечается рост шума в городах, что связано с резким увеличением движения транспорта (автомобильного, рельсового, воздушного).

Транспортный шум по характеру воздействия является непостоянным внешним шумом, так как уровень звука изменяется во времени более чем на 5 дБ.

Уровень различных шумов зависит от интенсивности и состава транспортных потоков, планировочных решений (профиль улиц, высота и плотность застройки) и наличия отдельных элементов благоустройства (тип дорожного покрытия и проезжей части, зеленые насаждения). Наблюдается зависимость уровней звука на магистралях от фактических режимов движения транспорта.

Диапазон колебаний между фоновыми и максимальными (пиковыми) уровнями звука, характеризующими шумовой режим примагистральной территории, в дневное время составляет в среднем 20 дБ.

В ночной период суток размах колебаний максимальных уровней звука относительно фона увеличивается. Это связано с изменением интенсивности движения, которая в периоды между часами пик, как правило, снижается в 2 – 2,5 раза.

С удалением от транспортного потока в глубь жилой территории наблюдается сужение диапазона колебаний эквивалентного уровня звука, вызванное быстрым снижением высоких максимальных уровней звука, которые характеризуют кратковременный шум отдельных транспортных средств.

Влияние шума на организм. Субъективная оценка влияния различных факторов внутрижилищной и окружающей среды на комфортность проживания подтверждает существенную роль шума в создании неблагоприятных условий в жилых домах. Воздействие шума может вызвать следующие реакции организма:

  • органическое расстройство слухового анализатора;
  • функциональное расстройство слухового восприятия;
  • функциональное расстройство нейрогуморальной регуляции;
  • функциональное расстройство двигательной функции и функции чувств;
  • расстройство эмоционального равновесия.

Общая реакция населения на шумовое воздействие – чувство раздражения. Отрицательное воздействующий звук способен вызвать раздражение, переходящее в психоэмоциональный стресс, который может привести к психическим патологическим изменениям в организме человека. С повышением уровня звука возрастает чувство неприятности.

Субъективная реакция человека как интегральный показатель функционального состояния организма на шумовое воздействие зависит от степени умственного, возраста, пола, состояния здоровья, длительности влияния и уровня шума.

Среди населения всегда имеются люди, более чувствительные к шуму. Чувствительность к шуму коррелирует с невротичностью человека.

Воздействия шума на человека можно условно подразделить на:

  • специфические (слуховые) – воздействие на слуховой анализатор, которое выражается в слуховом утомлении, кратковременной или постоянной потере слуха, расстройствах четкости речи и восприятия акустических сигналов;
  • системные (внеслуховые) – воздействие на отдельные системы и организм в целом (на заболеваемость, сон, психику).

Уровни коммунального шума почти всегда значительно ниже предела, установленного для рабочей зоны (85 – 90 дБ). Однако имеются коммунальные шумы, максимальные значения которых достигают указанного верхнего предела (от телевизора, воспроизведения музыки, ударных музыкальных инструментов, мотоциклов). Снижению остроты слуха может способствовать и длительное воздействие на человека транспортного шума. Неблагоприятное воздействие на слух оказывается в случаях, когда человек подвергается действию шума, как на производстве, так и дома.

В настоящее время лиц, обладающих “отличным” слухом, среди молодежи и взрослых намного меньше, чем 20 лет назад. Изменения в органе слуха происходит уже в период созревания. Причиной является насыщенная техникой жизненная среда, а у молодежи, кроме того, громкая музыка.

Одной из специфических особенностей шума является его маскировочный эффект – воздействие на восприятие звуковой и в особенности речевой информации.

Под влиянием шума у людей изменяются показатели переработки информации, снижается темп и ухудшается качество выполняемой работы.

Изучение влияния шума на жителей разного пола и возраста показало, что более чувствительны к нему женщины и лица старших возрастных групп. Данные категории населения, проживающие в шумных районах, чаще жалуются на раздражение, нарушение сна, головные боли, боли в области сердца. Объективно выявлены тенденции к повышению артериального давления, изменения отдельных показателей электрокардиограммы, функциональные нарушения центральной и вегетативной нервной системы, снижение слуховой чувствительности.

Одним из критериев отрицательного воздействия шума на сон является его нарушение. Число жалоб на расстройства сна увеличивается с ростом уровня шума. Особенно чувствительны к ночному шуму лица в возрасте от 40 до 60 лет; работники умственного труда более чувствительны, чем рабочие, занятые физическим трудом; больные более чувствительны, чем здоровые. Детей грудного возраста пробуждает только шум высокого уровня.

Установлена зависимость между повышением уровня шума в квартире с 35 до 50 дБ и значительным увеличением, как период засыпания, так и коэффициента двигательной активности.

Уровень шума в ночное время не должен превышать 35 дБ. На шум 35 – 40 дБ реагируют 13% спящих, а на 45 дБ – 35%. Пробуждение наступает обычно при уровне шума 50,3 дБ (изменение стадии сна – при 48,5 дБ).

Оздоровление жилой среды городов и других населенных пунктов тесно связано со снижением отрицательного воздействия на человека шума от внешних источников. Постоянный рост автопарка в городах и интенсивности транспортных потоков, расширение улично-дорожной сети приводят к значительному увеличению площади городских территорий с неблагоприятным акустическим режимом и ухудшению условий проживания в жилых домах.

В Российской Федерации превышение допустимых санитарными нормами уровней звука на территории жилой застройки составляет 15 – 25 дБ, а в помещениях жилых зданий – 20 дБ и более, что требует разработки и проведения эффективных шумозащитных мероприятий.

Снижение шума в источнике его возникновения является действенным и самым эффективным путем борьбы с шумом. Поэтому мероприятия по снижению шума должны проводиться в процессе конструирования машин и оборудования.

Существенное влияние на шумовой режим микрорайонов оказывают также ширина защитной территориальной полосы до источника интенсивного внешнего шума, степень ее озеленения. На каждое удвоенное расстояние от точечного источника понижения уровня шума составляет 3 дБ.

Большое значение имеет использование рациональных планировочных приемов градостроительства, обоснованное решение объемно-пространственной композиции жилой территории, учет особенностей рельефа местности и т.д.

За счет использования конфигурации местности можно достичь большого эффекта в защите от шума при относительно невысоких затратах.

Для снижения шума на жилой территории необходимо соблюдать следующие принципы:

  • вблизи источников шума размещать малоэтажные здания;
  • шумозащитные объекты строить параллельно транспортной магистрали;
  • группировать жилые объекты в закрытые или полузакрытые кварталы;
  • здания, не требующие защиты от шума (склады, гаражи, некоторые мастерские и т.д.), использовать в качестве барьеров, ограничивающих распространение шума.

Экранирующие объекты, используемые для борьбы с шумом, должны располагаться как можно ближе к его источнику, причем большое значение имеют непрерывность таких объектов по всей длине, их высота и ширина. Поверхность противошумовых экранов, обращенная к источнику, должна быть выполнена по возможности из звукопоглощающего материала.

В условиях плотной городской застройки и дефицита свободной территории целесообразно осуществлять строительство специальных шумозащитных (барьерных) зданий-экранов (жилого и нежилого назначения), фронтально размещаемых вдоль магистралей и образующих акустическую тень за зданием.

В качестве экранов для защиты от шума кроме протяженных зданий могут использоваться специальные сооружения типа стенок, выемок, насыпей, эстакад и т.п. Экраны, выполненные в виде вертикальной защитной стенки, получили применение в условиях сложившейся застройки как более компактные по сравнению с остальными типами экранов.

Наглядным примером могут служить установленные вдоль Московской кольцевой автомобильной дороги бетонные, либо металлические шумозащитные стенки, значительно снизившие отрицательное воздействие шума на жителей близлежащих микрорайонов.

Большое значение для снижения уровня шума в жилой среде имеет оформление лоджий и балконов. С помощью звукопоглощающей облицовки данных частей фасада и применения плотных (без отверстий) перил можно достичь весьма значимого снижения интенсивности шума, проникающего внутрь помещения, особенно на более высоких этажах.

Транспортный шум уменьшают (до 25 дБ) типовые конструкции окон с повышенной звукоизоляцией за счет увеличения толщины стекол и воздушного пространства между ними, тройного остекления, уплотнения притворов, использования звукопоглощающей прокладки по периметру оконных рам.

Разработаны и внедрены в практику специальные конструкции оконных блоков с устройством вентиляционных клапанов-глушителей (“шумозащитное окно”), обеспечивающих естественную вентиляцию помещений при одновременном снижении транспортного шума.

Создание конструкций с высокоэффективными клапанами-глушителями (снижение уровня звука составляет 25-35 дБ) позволяет оборудовать ими жилые здания, расположенные на магистралях с интенсивным движением транспорта и уровнями звука 80 дБ и более, при условиях обеспечения нормативных параметров микроклимата и воздухообмена в жилых помещениях.

Вибрация в условиях жилищ, ее влияние на организм человека.

Вибрация как фактор среды обитания человека наряду с шумом относится к одному из видов ее физического загрязнения, способствующего ухудшению условий проживания городского населения.

Вибрация, воздействуя на живой организм, трансформируется в энергию биохимических и биоэлектрических процессов, формируя ответную реакцию организма.

При длительном проживании людей в зоне воздействия вибрации от транспортных источников, уровень которой превышает нормативную величину, отмечается ее неблагоприятное влияние на самочувствие, функциональное состояние центральной нервной и сердечно-сосудистой систем, повышение уровня неспецифической заболеваемости.

Активная преобразующая деятельность человека постоянно меняет вибрационный фон окружающей среды.

Колебания в зданиях могут генерировать внешние источники (подземный и наземный транспорт, промышленные предприятия), внутридомовое оборудование встроенных предприятий торговли и коммуникально-бытового обслуживания населения.

Вибрация в квартире часто вызвана эксплуатацией лифта. В некоторых случаях ощутимая вибрация наблюдается при строительных работах, проводимых вблизи жилых зданий (забивка свай, демонтаж и ломка зданий, дорожные работы).

Источником повышенной вибрации в жилых домах могут служить промышленные предприятия при эксплуатации гидравлических и механических прессов, строгательных и вырубных механизмов, бетономешалок, дробилок, компрессов, падающих молотов при забивании свай.

В последние годы возросло число жалоб населения на вибрацию от основных средств транспорта.

Проблема борьбы с вибрацией в жилых зданиях приобрела особую актуальность в связи с развитием в крупных городах метрополитенов, строительство которых осуществляется способом мелкого заложения. Линии метрополитена прокладывают под существующими жилыми районами, а опыт эксплуатации подземных поездов показал, что интенсивные вибрации проникают в близлежащие жилые здания в радиусе до 40-70 м по обе стороны от тоннеля метрополитена и вызывает серьезные жалобы населения.

Вибрации, возникающие в тоннеле, через грунт передаются фундаменту окружающих зданий, возбуждая в них колебания различных конструктивных элементов.

Изучение распространения вибрации по этажам здания показало, что в пятиэтажных домах уровни виброускорения снижаются в направлении от первого до пятого этажа на частотах 8-32 Гц на 4-6 дБ. В многоэтажных зданиях отмечается как уменьшение величин колебаний на более высоких этажах, так и увеличение их из-за резонансных явлений.

Интенсивность вибрации в жилых домах зависит от расстояния до источника. В радиусе до 20 м превышение уровня вибрации над фоновыми значениями в октавных полосах частот 31,5 и 63 Гц в среднем составляет 20 дБ, в октавной полосе 16 Гц уровни вибрации от поездов превышают фон на 2 дБ, а в низкочастотном диапазоне соизмеримы с ним. С увеличением расстояния до 40 м уровни вибрации снижаются до 27-23 дБ соответственно частотам 31,5 и 63 Гц, а на расстоянии свыше 50 м от тоннеля уровни виброускорения не выходят за пределы колебания фона.

Таким образом, источники вибрации в жилых помещениях различают по интенсивности, временным параметрам, характеру спектровибрации, что и определяет различную степень выраженности реакции жителей на их воздействие.

Влияние вибрации на организм человека. Вибрация в условиях жилой среды может действовать круглосуточно, вызывая раздражение, нарушая отдых и сон человека.

В отличие от звука вибрация воспринимается различными органами и частями тела. Низкочастотные поступательные вибрации воспринимаются отолитовым аппаратом внутреннего уха. В ряде случаев реакция людей определяется не столько восприятием самих механических колебаний, сколько вторичными зрительными и слуховыми эффектами (например, дребезжание посуды в шкафу, хлопанье дверей, раскачивание люстры и т.д.).

Субъективное восприятие вибрации зависит не только от ее параметров, но и от множества других факторов: состояния здоровья, тренированности организма, индивидуальной переносимости, эмоциональной устойчивости, нервно-психического статуса субъекта, подвергаемого действию вибрации. Имеет значение также способ передачи вибрации, длительность экспозиции и пауз.

В квартирах ощутимые вибрации почти всегда воспринимаются как посторонние и необычные и поэтому их можно считать мешающими. Зрительные и слуховые воздействия усугубляют их неблагоприятное влияние.

На восприятие вибрации может существенно влиять деятельность субъекта. При этом вибрация, мешающая человеку при спокойной сидячей работе, совсем не будет восприниматься человеком, который во время работы переходит с места на место. Таким образом, можно полагать: чем спокойнее работа, тем интенсивнее человек воспринимает вибрацию.

Мерой оценки восприятия вибрации служит понятие “сила восприятия”, которое является связующим звеном между величинами колебаний, их частотой и направлением, с одной стороны, и восприятием вибрации – с другой.

Американские исследователи различают три степени реакции на вибрацию в зависимости от амплитуды ее ускорения: порог восприятия сидящим человеком синусоидальных вертикальных вибраций, неприятные ощущения, предел добровольно переносимой вибрации в течении 5-20 минут.

Сила восприятия механических колебаний, воздействующих на человека, зависит в значительной степени от биомеханической реакции тела человека, представляющего собой в известной мере механическую колебательную систему.

Особое внимание при этом уделяется изучению явления резонанса как всего тела человека, так и отдельных его органов и систем. Установлено, что при частоте воздействующей вибрации свыше 2 Гц человек ведет себя как целостная масса; для сидящего человека резонанс тела находится в интервале от 4 до 6 Гц. Другая полоса резонансных частот лежит в области 17-30 Гц и вызывается в системе "голова-шея-плечо“. В этом диапазоне амплитуда ускорения колебания головы может втрое превышать амплитуду колебания плеч.

Таким образом, тело человека представляет сложную колебательную систему, обладающую собственным резонансом, что и определяет строгую частотную зависимость многих биологических эффектов вибрации.

Результаты опроса и клинико-физиологического обследования населения, подвергающегося воздействию вибрации, показали, что вибрация в жилых помещениях вызывает негативную реакцию людей (от легкого беспокойства до сильного раздражения). Жалобы на вибрацию носят разнообразный характер: “ощущается как землетрясение”, “дом дрожит”, “дребезжит посуда”. Регулярно повторяющиеся через 1,5 – 2 мин колебания пола, сотрясение стен, мебели и т.п. нарушают отдых жителей, мешают сосредоточиться при умственном труде. В новых микрорайонах после года проживания в условиях воздействия вибрации опрошенные лица отмечали повышенную раздражительность, нарушение сна, увеличение приема седативных препаратов. По данным опроса, 20,4% жителей предъявляли жалобы в различные учреждения санитарной службы, а 47% предпринимали активные действия для перемены местожительства.

Степень раздражающего действия вибрации зависит от ее уровня (или расстояния до источника колебаний). Наибольшие уровни вибрации, зарегистрированные в радиусе до 20 м от источника, вызывают негативную реакцию у 37% жителей. С возрастанием зоны разрыва количество жалоб уменьшается, и на расстоянии 35–40 м колебания ощущают 17% жителей. Дальнейшее увеличение расстояния в связи с уменьшением амплитуды колебаний не влияет на восприятие жителями вибрации, что позволило установить 40-метровую допустимую зону разрыва между жилой застройкой и тоннелями метрополитена мелкого заложения.

Наибольшее количество жалоб (65%) предъявляют лица в возрасте от 31 до 40 лет.

Нетерпимы к вибрационному воздействию лица с неудовлетворительным состоянием здоровья, заболеваниями сердечно-сосудистой и нервной систем. Количество жалоб в этой группе в 1,5 раза больше, чем в группе здоровых людей.

Клинико-физиологическое обследование населения, подвергающегося длительному вибрационному воздействию, выявило изменения состояния физиологических функций у обследованных. При этом преобладали жалобы на эмоциональную волевую неустойчивость, функциональные нарушения центральной нервной системы. Кроме того, отмечено напряжение регуляторных систем сосудистого тонуса, развитие функциональных изменений различной степени выраженности в центральной нервной системе.

Гигиеническое нормирование вибрации в условиях жилища. Важнейшим направлением решения проблемы ограничения неблагоприятного воздействия вибрации в жилищных условиях является гигиеническое нормирование ее допустимых воздействий. При определении предельных значений вибрации для различных условий пребывания человека в качестве основной величины используется порог ощущения вибрации. Предельные значения даются как кратная величина этого порога ощущения. Ночью в жилых помещениях допускается только одно- или четырехкратный порог ощущения, днем двукратный.

В РФ нормативные уровни вибрации в жилых домах, условия и правила ее изменения и оценки регламентируют Санитарные нормы допустимых вибраций в жилых домах № 1304-75.

Электромагнитные поля как неблагоприятный фактор среды жилых и общественных помещений. Распространенным и постоянно возрастающим негативным фактором городской среды являются электромагнитные поля (ЭМП), создаваемые различными устройствами, генерирующими, передающими и использующими электрическую энергию. Электромагнитное загрязнение среды населенных мест стало столь существенным, что ВОЗ включила эту проблему в число наиболее актуальных для человека.

Как уже отмечалось, в настоящее время имеется огромное количество самых разнообразных источников электромагнитных полей, находящихся как вне жилых и общественных зданий (линии электропередач, станции спутниковой связи, радиорелейные установки, телепередающие центры, открытые распределительные устройства, электротранспорт), так и внутри помещений (компьютеры, сотовые и радиотелефоны, пейджеры, бытовые микроволновые печи и др.).

Мощными источниками высокочастотных электромагнитных полей являются телерадиопередающие ретрансляторы, которые располагаются обычно в центре крупных городов, рядом с жилой застройкой. Передающие центры, спроектированные более двух десятков лет назад для трансляции двух телевизионных программ, сейчас транслируют от 5 до 10 программ.

На территории санитарно-защитной зоны линий электропередач (ЛЭП) нередко строятся частные дома и дачи.

Спектр электромагнитных колебаний, создаваемых линиями электропередач, радио- и телепередающими центрами, радиолокационными системами достаточно широк (табл.2.3).

Действие ЭМИ РЧ было подробно рассмотрено в разделе II.

Для предотвращения неблагоприятного влияния ЭМП на население установлены предельно допустимые уровни (ПДУ) напряженности электромагнитного поля, кВ/м:

  • внутри жилых зданий – 0,5;
  • на территории зоны жилой застройки – 1,0;
  • в населенной местности вне зоны жилой застройки – 10;
  • в населенной местности (часто посещаемой людьми) – 15;
  • в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) – 20.

Основным способом защиты от ЭМП в жилой зоне является защита расстоянием, что обеспечивается путем создания специальных санитарно-защитных зон (СЗЗ) вокруг радиотехнических объектов. К мероприятиям, снижающим плотность потока энергии, относят рациональную застройку, применение специальных строительных конструкций, озеленение. Застройка должна свести к минимуму площадь поверхностей, через которые радиоволны легко проникают внутрь помещений.

Наиболее приемлемым материалом для зданий является железобетон. В зданиях, расположенных в первом ряду застройки, рекомендуется заделка мелкоячеистой сетки в облицовочный или штукатурный слой на стенах, обращенных в сторону радиотехнический объектов. Стыки сеток надо сваривать, сетки должны быть заземлены. В следующих рядах зданий поверхность облучаемых стен покрывают составами, поглощающими радиоволны. Лучшая защита сверху – крыша из кровельного или оцинкованного железа. В сторону антенн следует ориентировать минимальную площадь остекления. Так как в основном радиоволны проникают в помещение через оконные проемы, то в необходимых случаях можно экранировать оконные проемы специальным стеклом с металлизированным слоем.

Существенным источником электромагнитных полей, наряду с линиями электропередач и телерадиопередающими установками, являются видеодисплейные терминалы (ВДТ) и персональные электронно-вычислительные машины (ПЭВМ) – компьютеры, получившие широкое использование в офисе и быту.

Меры защиты при использовании ПЭВМ более подробно изложены в разделе III.