2.6.1. Радиально-кольцевая архитектура
2.6.2. Архитектура типа "кольцо-кольцо"
Архитектурные решения при проектировании сети SDH могут быть сформированы на базе использования рассмотренных выше элементарных топологий сети в качестве ее отдельных сегментов. Учитывая возможность самостоятельного использования отдельных элементарных топологий, мы рассмотрим здесь только сети, комбинирующие рассмотренные элементарные топологии. Наиболее часто используется сочетание кольцевой и радиальной (типа "точка-точка") топологий или топологии последовательной линейной цепи.
2.6.1. Радиально-кольцевая архитектура
Пример радиально-кольцевой архитектуры SDH сети приведен на рис.2-34. Эта сеть фактически построена на базе использования двух базовых топологий: "кольцо" и "последовательная линейная цепь". Вместо последней может быть использована более простая топология "точка-точка". Число радиальных ветвей ограничивается из соображений допустимой нагрузки (общего числа каналов доступа) на кольцо.
2.6.2 Архитектура типа "кольцо-кольцо"
Другое часто используемое в архитектуре сетей SDH решение - соединение типа "кольцо-кольцо". Кольца в этом соединении могут быть либо одинакового, либо разного уровней иерархии SDH. На рис.2-35 показана схема соединения двух колец одного уровня - STM-4 с помощью интерфейсных карт STM-1, а на рис.2-36 - каскадная схема соединения трех колец различного (по нарастающей) уровня - STM-1, STM-4, STM-16. При таком соединении можно использовать необходимые оптические трибы предыдущего иерархического уровня при переходе от кольца одного уровня к другому (например, триб STM-1 при переходе на кольцо STM-4 и триб STM-4 при переходе на кольцо STM-16).
2.6.3. Линейная архитектура для сети большой протяженности
Для линейных сетей большой протяженности расстояние между терминальными мультиплексорами ТМ больше или много больше того расстояния, которое может быть рекомендовано с точки зрения максимально допустимого затухания волоконно-оптического кабеля. В этом случае на маршруте (в линейном тракте) между ТМ (рис.2-37) должны быть установлены кроме мультиплексоров и проходного коммутатора еще и регенераторы для восстановления (регенерации) затухающего оптического сигнала. Эту линейную архитектуру можно представить в виде последовательного соединения ряда секций, специфицированных в рекомендациях ITU-T Rec. G.957 и Rec. G.958 [24, 25].
Принято различать три типа стандартизованных участков - секций: оптическая секция (участок от точки электронно-оптического до точки опто-электронного преобразований сигнала), которая по сути являются участком волоконно-оптического кабеля между элементами сети SDH (на рис.2-37 не показано), регенераторная секция и мультиплексная секция (рис.2-37).
Оптические секции нормируются, согласно [24] по длине, при этом выделяют три категории: I - внутристанционная секция, длиной до 2-х км, S - короткая межстанционная секция, порядка 15 км, и L - длинная межстанционная секция, порядка 40 км (при длине волны 1310 нм) и 80 км (при длине волны 1550 нм). Указанные длины секций используются только для классификации (см. ниже) и не могут рассматриваться как рекомендуемые значения используемых техничеких параметров. Общая длина маршрута может составлять при этом сотни или же тысячи километров. Маршрут в [47] рассматривается как участок тракта между терминальными мультиплексорами, допускающий автоматическое поддержание функционирования сети с номинальной производительностью.
Мультиплексная секция рассматривается как участок тракта между транспортными узлами (мультиплексорами и коммутаторами), допускающий аналогичное автоматическое поддержание функционирования.
Регенераторная секция рассматривается как участок тракта между двумя регенераторами или между регенератором и другим элементом сети SDH. В [24] для аналогичных определений используются опорные точки А (вход/выход волокна) и С (вход/выход начала/окончания регенераторной секции RST) в схеме представления регенераторной секции, определенные в стандарте ITU-T Rec. G.783 [22]. Более подробно это изложено в рекомендациях ITU-T [24, 25] или в работах [6, 47].
Описанный выше секционный заголовок ЗОН фрейма STM-N, содержащий управляющую информацию, делится, как указывалось, на две части: RSOH - заголовок регенераторной секции - 27 байтов (строки 1-3, столбцы 1-9) и MSOH - заголовок мультиплексной секции - 47 байтов (строки 5-9, столбцы 1-9) [17]. Регенераторная секция обрабатывает RSOH, который содержит синхросигнал, а также управляющую и контрольную информацию, позволяющую локализовать поврежденную секцию. Этот заголовок, будучи сформированным и введенным в фрейм на входе RST, считывается каждым регенератором и выводится из фрейма на выходе RST, что более подробно описано в [17].
Классификация секций приведена в таб.2-1. Она дает стандартное обозначение секций в зависимости от уровня STM (1, 4, 16) и приведена для указанных трех типов применения: внутри станции (код использования I), между станциями - короткая секция (код использования S), между станциями - длинная секция (код использования L). В общем случае кодировка типов использования линейных регенераторных секций как оборудования SDH включает три элемента и имеет формат:
<код использования> - <уровень STM> . <индекс источника >
Здесь код использования и уровни STM приведены выше, а индекс источника имеет следующие значения и смысл:
- 1 или без индекса - указывает на источник с длиной волны 1310 нм;
- 2 - указывает на источник с длиной волны 1550 нм для волокна, соответствующего рекомендациям G.652 (секции S) и G.652, G.654 (секции L);
- 3 - указывает на источник с длиной волны 1550 нм для волокна, соответствующего рекомендации G.653.
Например, обозначение L-4.3 расшифровывается как длинная межстанционная регенераторная секция линейного оборудования STM-4, использующая источник света с длиной волны 1550 нм.
Таблица 2-1.
Классификация стандартных оптических интерфейсов
2.6.4. Архитектура разветвленной сети общего вида
В процессе развития сети SDH разработчики могут использовать ряд решений, характерных для глобальных сетей, таких как формирование своего "остова" (backbone) или магистральной сети в виде ячеистой (mash) структуры, позволяющей организовать альтернативные (резервные) маршруты, используемые в случае возникновения проблем при маршрутизации виртуальных контейнеров по основному пути. Это, наряду с присущим сетям SDH внутренним резервированием, позволяет повысить надежность всей сети в целом. Причем при таком резервировании на альтернативных маршрутах могут быть использованы альтернативные среды распространения сигнала. Например, если на основном маршруте используется волоконно-оптический кабель (ВОК), то на резервном - радиорелейная линия (РРЛ), или наоборот.
На рис.2-38 представлена архитектура такой разветвленной (глобальной) сети, остов (или опорная/магистральная сеть) которой сформирован для простоты в виде одной сетевой ячейки, узлами которой являются коммутаторы типа SDXC, связанные по типу "каждый с каждым". К этому остову присоединены периферийные сети SDH различной топологии, которые могут быть "образами" либо корпоративных сетей (с выходом на LAN), либо общегородских сетей SDH или MAN (ОГС), либо сегментов других глобальных сетей WAN (ГСС). Эта структура может рассматриваться как некий образ глобальной сети SDH.
Еще один пример сети SDH общего вида приведен на рис.2-39. Эта сеть рассматривается в [55] как пример законченного решения сети, связывающей сегменты, использующие как топологии SDH, так и PDH.
Схема сети (рис.2-39} состоит из трех колец SDH, связанных между собой тремя сегментами. Два верхних кольца STM-4 связаны последовательной линейной SDH цепью уровня STM-16. Левые верхнее (STM-4) и нижнее (STM-1) кольца связаны линией Е4 PDH (140 Мбит/с), терминальные мультиплексоры PDH которой PSM-1 на уровне триба Е4 непосредственно связаны с SDH мультиплексорами SDM-1. Замыкающее звено между правым верхним и нижним кольцами SDH использует кросс-коммутатор T::DAX, связанный на уровне PDH грибов с двумя мультиплексорами SDM-1 нижнего кольца STM-1 с одной стороны и мультиплексором SDM-1 с другой. Последний выполняет несколько функций:
- терминального мультиплексора последовательной линейной цепи SDM-1;
- мультиплексора ввода/вывода для сети доступа, организуемой через РСМ-2, и потоков от кросс-коммутатора T::DAX;
- концентратора-коммутатора потоков между T::DAX, верхним кольцом STM-4, линейной цепью SDM-1 и PDH мультиплексором РСМ-2 в сети доступа.
Наконец, сети SDH общего вида можно рассматривать как транспортную сеть для ATM трафика, учитывая, что виртуальные контейнеры VC-n могут нести в упакованном виде поток ATM ячеек в качестве полезной нагрузки. Можно отметить, что в настоящее время стандартизованы процедуры такой упаковки (инкапсуляции) ATM ячеек в виртуальные контейнеры VC-4 и VC-4-Xc, используемые в схемах мультиплексирования SDH (более подробно см. рекомендации ITU-T G.709 [18] или работу [162]).
Для сопряжения SDH и ATM сетей (рассматриваемых как сети доступа) уже сейчас существуют коммутаторы доступа ATM, осуществляющие упаковку ячеек ATM в виртуальные контейнеры SDH. Одним из них является, например, коммутатор АТоМ компании ECI. Схема общей сети SDH и ATM сети доступа приведена на рис.2-40.
Сокращения, приведенные на указанных рисунках расшифрованы в списке сокращений.