9.1. Электромагнитное реле постоянного и переменного тока
9.1.2. Основные этапы работы реле
9.2. Контакторы и магнитные пускатели
9.1. Электромагнитное реле постоянного и переменного тока
9.1.1. Реле. Общие сведения
Релейный элемент - переключательное устройство с двумя или более состояниями устойчивого равновесия, каждое из которых может скачком сменяться другим под влиянием внешнего воздействия (управления).
Реле – устройство для автоматической коммутации электрических цепей по сигналу управления. Реле в системах управления часто являются одновременно усилителями и управляющими элементами для электродвигателей и исполнительных устройств. Электрическое реле в общем случае является промежуточным элементом, приводящим в действие одну или несколько управляемых электрических цепей
Основными параметрами, характеризующими работу реле, являются мощность срабатывания, мощность управления,. время срабатывания.
а) Мощность срабатывания:Рср (Вт) - это минимальная электрическая мощность, которая должна быть подведена к реле от управляющей цепи для его надежного срабатывания, т.е. приведения в действие управляющей цепи. Мощность срабатывания определяется общими электрическими и конструктивными параметрами реле.
б) Мощность управления: Рупр. (Вт) - это максимальная величина электрической мощности, коммутируемая в управляемой цепи. Рупр. определяется параметрами контактов реле, переключающих управляемую цепь. Выбор типа реле производится на основании значений Рср и Рупр, т.к. эти параметры постоянны для определенных конструкций реле.
в) Время срабатывания: Tср (сек) - интервал времени от момента поступления сигнала из управляющей цепи до замыкания контактов реле.
г) Допустимая разрывная мощность Рр (Вт) определяется для сильноточных реле, как мощность, разрываемая контактами при определенном токе или напряжении без образования устойчивой электрической дуги.
9.1.2. Основные этапы работы реле
Вследствие инерционности управляющей цепи и реле в целом входной ток реле возрастает и убывает не мгновенно, а по некоторой кривой. В связи с этим различают следующие этапы работы реле: срабатывание реле, работа реле, возврат реле. рассмотрим их на примере работы электромагнитного реле постоянного тока.
В реле за счет индуктивности катушки ток нарастает или убывает не мгновенно, а постепенно по некоторой кривой. Работа реле складывается из различных временных интервалов: рис. 100.
Рис. 100. Временная диаграмма работы реле
1. Этап срабатывания реле состоит из двух временных интервалов: времени трогания tТР и время движения якоря tДВ. Тогда tСР = tДВ + iТР.
2. Этап работы реле тоже включает два участка: на участке А-B после срабатывания реле ток продолжает увеличиваться до достижения установившегося значения, чтобы обеспечить надежное притяжения якоря к сердечнику, исключающее вибрацию якоря, на участке B-C величина тока остается неизменной.
3. Этап возврата реле тоже включает два участка: участок отпускания реле С-Д (tотп),. участок возврата в исходное состояние (tдв).
У реле часто используют следующие параметры.
Кb - коэффициент возврата - это отношение тока отпускания к току срабатывания (обычно Kb=0,4 - 0,8):
.
КЗАП - коэффициент запаса реле по срабатыванию - это отношение установившегося тока iУСТ к величине тока срабатывания iСР (показывает надежность работы реле).
КЗАП = iУСТ/iСР.
Коэффициент управления: Купр- это величина характеризующая отношение Рупр к Рср реле. Если реле рассматривать как усилитель, то это коэффициент усиления по мощности.
9.1.3. Типы реле
Реле, применяемое в системах автоматики, можно классифицировать по различным принципам.
1) по назначению (управления, защиты и сигнализации);
2) по принципу действия:
а) электромеханические, электромагнитные нейтральные, электромагнитные поляризованные, магнитоэлектрические, электродинамические, индукционные, электротермические;
б) магнитные бесконтактные;
в) электронные;
г) фотоэлектронные;
д) другие.
3) по замеряемой величине:
а) электрические: тока, напряжения, мощности, сопротивления, частоты, коэффициента мощности;
б) механические: силы, давления, скорости, перемещения, уровня, объема;
в) тепловые: температуры, количества тепла;
г) времени и др.
4) по мощности управления:
а) маломощные с мощностью управления, ;
б) средней мощности, ;
в) мощные, Рупр≥10Вт.
5) по времени срабатывания:
а) безинерционные ;
б) быстродействующие ;
в) замедленные tср = (0,15¼1) cек;
г) реле времени .
Наиболее распространенными реле являются электромеханические, в которых изменение входной электрической величины вызывает механическое перемещение подвижной части реле (якоря), приводящее к замыканию или размыканию контактов реле. Наиболее широкое применение в устройствах автоматики, телемеханики и в вычислительной технике нашли электромагнитные реле.
9.1.4. Электромагнитное реле постоянного тока
Электромагнитные реле по роду используемого тока делятся на реле постоянного и переменного тока. Реле постоянного тока делятся на нейтральные и поляризованные.
Электромагнитное нейтральное реле
Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке, т.е. усилие на якоре не зависит от направления тока в обмотке реле. По характеру движения якоря электромагнитные нейтральные реле делятся на два типа: с угловым движением якоря (рис. 101)и с втяжным якорем.
Рис. 101. Электромагнитное нейтральное реле постоянного тока
1 - сердечник с катушкой; 2 - основание (или ярмо); 3 - якорь (или коромысло); 4 - штифт; 5 - система контактов.
При отсутствии управляющего сигнала якорь удален от сердечника на максимальное расстояние за счет возвратной пружины. При этом размыкающие контакты РК замкнуты, а замыкающие контакты ЗК - разомкнуты. При подаче тока в обмотку создается магнитный поток, который, проходя через сердечник, ярмо, якорь и воздушный зазор dк(о) создает магнитное усилие, притягивающее якорь к сердечнику. При этом якорь, воздействуя на колодку, перемещает ее так, что контакты ЗК замыкаются, а контакты РК размыкаются.
Для малых токов в устройствах телемеханики, связи и сигнализации применяются маломощные контакты, представляющие собой плоские пружины из фосфоритной бронзы или нейзильбера с контактными наклепками из серебра и вольфрама, иногда из золота, палладия, платины и ее сплавов. Применяются точечные или плоско - цилиндрические наклепки .
Для средних токов (0,5-5А) применяются твердые и тугоплавкие металлы и их сплавы: вольфрам, платина - иридий, вольфрам - молибден, золото - палладий, вольфрам – платина - иридий.
Для больших токов применяются контакты из меди или из композиций (механических смесей), изготовленных спеканием порошков (металлокерамика). Для средних и больших токов контакты, используются контакты линейного и плоскостного типа.
Тяговая и механические характеристики реле
В процессе срабатывания реле изменяется длина воздушного зазора, а значит, изменяется электромагнитное усилие на якоре. Зависимость электромагнитного усилия от величины воздушного зазора Fэ = f(d) между якорем и сердечником называется тяговой характеристикой реле.
Рис. 102. Тяговая характеристика реле
Если пренебречь магнитным сопротивлением стальных элементов магнитопровода, то тяговая характеристика должна иметь форму гиперболы, но магнитное сопротивление воздушного зазора Rмd при малых значениях зазора уменьшается и становится сравнимым с..сопротивлением магнитопровода Rмст. Поэтому электромагнитное усилие Fэ не может иметь бесконечно большое значение, оно достигает некоторого Fэ.mах. При больших значениях зазора Rмd >> Rмст электромагнитное усилие имеет значение Fэ.min. После отключения обмотки реле магнитопровод сохраняет некоторое намагничивание и при возможно залипание якоря, для исключения его применяют немагнитный штифт.
Работа электромагнитного реле сводится к замыканию и размыканию контактных пружин, количество которых в разных реле колеблется в пределах 2-16 и более. Перемещению якоря по направлению к сердечнику в процессе притяжения противодействуют силы упругости возвратной пружины и контактных пружины. При разных положениях якоря эти силы различны, т.е. величина противодействующих сил зависит от величины воздушного зазора . Зависимость механических (противодействующих) сил от величины зазора между якорем и сердечником называется механической характеристикой реле Fэ = f(d). Рис. 103.
Рис. 103. Механическая и тяговые характеристики реле
В процессе работы реле якорь сначала преодолевает натяжение возвратной пружины. Участок аb характеризует усилие, действующего на якорь, чтобы сдвинуть его из начального положения. Участок bс - это ход якоря до первой контактной пружины. На участке cd якорь преодолевает совместное сопротивление возвратной спирали и нижней контактной пружины и т. д.
Тяговая характеристика должна располагаться выше механической, оптимально, если они касаются в одной точке.
Если коммутируемая цепь достаточно мощная, то процесс размыкания протекает значительно сложнее, чем процесс первичной коммутации (возникающая ЭДС самоиндукции стремится сохранить значение тока коммутируемой цепи). Этот процесс может сопровождаться возникновением искрового или дугового разряда. Дуга сильно разрушает контакты. Для преодоления возникновения дугового режима необходимо использовать или увеличение активного сопротивления или специальные конструктивные методы:
Поляризованное электромагнитное реле
Это такие реле, у которых направление электромагнитного усилия зависит от полярности сигнала постоянного тока в обмотке. Поляризация таких реле осуществляется при помощи постоянного магнита. Существует много конструктивных разновидностей поляризованных систем, по конфигурации магнитной цепи они делятся на: дифференциальные и мостовые. Существует 3 типа поляризованного реле в зависимости от настройки контактов:
- реле двухпозиционное;
- реле двухпозиционное с преобладанием (влево или вправо);
- трехпозиционное реле (реле с зоной нечувствительности).
Принцип действия двухпозиционного поляризованного реле поясняет схема на рис. 104.
Рис. 104. Дифференциальное поляризованное реле: 1 и 2 - намагничивающие катушки; 3 - ярмо; 4 - постоянный магнит; 5 - якорь; 6 и 6¢- контакты.
Намагничивающие катушки 1 и 2- создают в ярме 3 магнитный поток Фэ (рабочий). Постоянный магнит 4 создает постоянный магнитный поток Фоп. Если якорь находится в строго симметричном нейтральном положении, то имеет место разделение поляризующего магнитного потока Фоп на две равные части: Фо1 и Фо2. Если управляющего сигнала нет, нет и рабочего потока обмоток Фэ. На якорь в этот момент действуют два равных и противоположных потока Фо1 и Фо2., поэтому тяговое усилие, равно нулю.
При появлении тока в обмотках реле в зависимости от полярности управляющего сигнала рабочий поток Фэ вычитается из потока Фо1 и прибавляется к потоку Фо2 или наоборот. Суммарный поток через якорь и тяговое усилие становится не нулевым. В зависимости от полярности напряжения якорь перекинется слева на право или наоборот. Изменение направления тягового усилия при изменении полярности тока в рабочей обмотке происходит из-за того, что изменяется направление рабочего потока относительно поляризующего Фоп..
Достоинства: высокая чувствительность (мощность срабатывания Вт); большой коэффициент управления; малое время срабатывания (единиц миллисекунд).
Недостатки: сложность конструкции; большие габариты, вес и стоимость.
9.1.5. Электромагнитное реле переменного тока
Электромагнитное реле переменного тока отличается от электромагнитного реле постоянного тока тем, что непосредственно подключается к сети, т.е. Uм(t)=Uм sin(ωt), f = 50-400 Гц. При подаче в обмотку реле переменного тока якорь будет притягиваться к сердечнику так же, как и при постоянном токе, т.к. электромагнитное (тяговое) усилие пропорционально квадрату намагничивающей силы, а стало быть, и квадрату тока в обмотке, т.е. знак тягового усилия не зависит от направления тока и останется неизменным.
,
Ток в обмотке электромагнита переменный, значит магнитный поток , созданный этим током в рабочем зазоре тоже переменный.
, значит .
Рис. 105. Тяговое усилие электромагнитного реле переменного тока
Якорь притягивается к сердечнику под действием среднего значения электромагнитного усилия Fэср (постоянная составляющая).
Fэср = Fэmax/2.
При одинаковых размерах реле и равных значениях максимальной индукции, среднее значение электромагнитного усилия у реле переменного тока вдвое меньше, чем у реле постоянного тока. Из формулы для тягового усилия следует, что усилие меняется (пульсирует) с удвоенной частотой 2w, обращается в нуль дважды за период питающего входного напряжения. Следовательно, якорь реле будет вибрировать, периодически оттягиваться от сердечника возвратной пружиной, возникает износ якоря. Для преодоления данного эффекта используются дифференциальные сердечники, а также фазосдвигающие элементы, уменьшающие вероятность перехода магнитного потока через нуль.
Наиболее часто для устранения вибрации якоря переменного тока применяют использование расщепленного сердечника с короткозамкнутой (к.з.) обмоткой. Конец сердечника, обращенный к якорю, расщеплен (пропилен) на две части, на одну из которых надета к.з. обмотка - экран (один или несколько витков). Магнитопровод выполнен из отдельных листов для уменьшения потерь. Переменный магнитный поток Фосн основной обмотки, проходя через разрезанную часть сердечника, делится на две части: Ф1 (через неэкранированный) и Ф2 (через экранированную половину полюса). Поток Ф2 наводит в к.з. витке ЭДС, создает ток iкз , возникает магнитный поток Фкз, который воздействует на Ф2 и вызывает его отставание относительно потока Ф1 на угол . Результирующее тяговое усилие Fэ никогда не доходит до нуля, т.к. оба потока проходят через нуль в разные моменты времени.
,
Тяговое усилие все же содержит переменную составляющую, т.к. фазовый сдвиг не может быть равен из-за наличия активных потерь (j = 60°-80°).
Рис. 106. Тяговое усилие реле с к.з. обмоткой
Fэо cр- среднее тяговое усилие без к.з. обмотки; Fэср- среднее тяговое усилие системы с расщепленным сердечником.
Для надежной работы реле необходимо, чтобы минимальное усилие Fэмin было как можно большим, т.к. эти усилия определяют допустимую нагрузку реле без вибрации.
Недостатки реле переменного тока: худшие параметры (меньшее электромагнитное усилие, меньшая чувствительность), сложность конструкции и дороговизна, применение специальных мер для устранения вибрации якоря.
Достоинство - непосредственное подключение к сети.
9.2. Контакторы и магнитные пускатели
9.2.1. Контакторы
Контактором называется электромагнитное реле с мощной контактной системой, для включения и отключения силовых цепей предназначенной в первую очередь для коммутации рабочих цепей электродвигателей. Главные контакты контакторов предназначены для работы в силовых цепях переменного тока промышленной частоты напряжением до 500 В. Главные контакты бывают, как замыкающими, так и размыкающими. Помимо главных контактов контакторы имеют дополнительные маломощные блок-контакты, которые используются для самоблокировки, включения удерживающих обмоток и коммутации дополнительных цепей. На схемах чтобы отличить главные контакты контактора от блок-контактов, их изображают более толстой линией.
Катушки контакторов используются для включения в цепи как переменного тока напряжением 127, 220 и 380 В, так и постоянного тока 24, 36, 110 или 220 В.
Контакторы постоянного тока предназначены для коммутации цепей постоянного тока и имеют обмотку, питающуюся, как правило, постоянным током. Контакторы переменного тока предназначены для коммутации цепей переменного тока; их обмотка питается, как правило, переменным напряжением. Контакторы большой мощности имеют дугогасительные средства. Конструкция и принцип действия контакторов переменного тока показана на рис.107.
Рис. 107. Схема контактора переменного тока
На рисунке изображены следующие элементы: 1 - стальной сердечник; 2 - катушка; 3 - якорь; 4 - неподвижный контакт; 5 - подвижный контакт; 6 - пружина; 7 и 8 - вспомогательные блок-контакты; 9 - изолирующая основа; 10 - камера гашения.
При включении тока, в катушке, якорь притягивается к сердечнику и замыкает главные контакты и вспомогательные контакты, пружина обеспечивает надежное соприкосновение контактов. Вспомогательные блок-контакты служат для включения цепей других реле, сигнализация и т.д. При выключении катушки якорь под действием своего веса отпадает, размыкая контакты 4-5 и 7-8.
Схемы включения контакторов. На рисунке 108 и 109 изображены обычные схемы включения контакторов.
Рис. 108. Схема включения с самоблокировкой
При нажатии кнопки К1 - реле срабатывает и замыкающим контактом БК шунтирует К1. Поэтому при отпускании кнопки К1 цепь обмотки остается замкнутой. Для отключения реле достаточно нажать кнопку К2, реле обесточится и его контакты, шунтирующие К1 разомкнутся.
Рис. 109. Схема взаимной блокировки двух реле
Схема используется, когда необходимо исключить одновременную работу двух реле, это достигается введением в цепь обмотки одного реле размыкающих контактов другого.
Если , то при нажатии на К11 и К21 срабатывает только Р1 и своими контактами размыкает цепь реле Р2. Если срабатывает одновременно Р1 и Р2 система может выйти из строя. Большинство главных контактов у контакторов снабжено дугогасящими устройствами по принципу электромагнитного дутья или деионной решетки.
Катушки контакторов, рассчитанных на питание постоянным током напряжением 110 или 220 В, потребляют мощность 20-30 Вт.
9.2.2. Магнитные пускатели
Магнитный пускатель - это один из видов контакторов, предназначенный для пуска и остановки двух и трехфазных асинхронных двигателей. По типу магнитные пускатели делятся на реверсивные; и нереверсивные
Рассмотрим работу пускателя в нереверсивной схеме управления электродвигателями переменного тока с коротко замкнутым ротором. Рис 110.
Рис. 110. Схема нереверсивного электродвигателя переменного тока с коротко замкнутым ротором
На рисунке изображены следующие элементы: Л1 – Л3 - главные контакты; БК - блок контакт; РТ1 и РТ2- биметаллические тепловые реле; К1- кнопка “ПУСК”; К2- кнопка “СТОП”; КРТ1 и КРТ2- контакты тепловых реле.
Контакт БК- служит для самоблокировки контактора после его срабатывания при нажатии кнопки К1;контакты РТ 1 и РТ2- для защиты двигателя от перегрузки.
При нажатии кнопки К1 образуется цепь: фаза (а) КРТ1 - втягивающая катушка контактора Р - КРТ2 - нажатая кнопка К1 - замкнутая кнопка К2 - фаза б. Когда через катушку контактора проходит ток, то мгновенно замыкаются главные контакты и блок контакты, в результате этого электродвигатель начинается вращаться. При замыкании блок контакта пусковая кнопка К1 шунтируется и может быть отпущена, т.к. ток в катушку реле проходит через блок контакт. При нажатии К2 цепь катушки обесточивается, линейные контакты и блок контакты размыкаются, электродвигатель останавливается. Тот же эффект будет при отключении напряжения в цепи главного тока при снижении его до 65% от номинального. Теперь магнитный пускатель самопроизвольно включиться не может, т.к. цепь катушки К разомкнута контактами К1 и БК. Вторичная подача напряжения в цепь головного тока не вызывает включения электродвигателя до тех пор, пока не будет вновь нажата кнопка К1, т.е. обесточивается нулевая защита. Через тепловые реле РТ1 и РТ2 - проходит весь ток электродвигателя. При нормальной нагрузке двигателя контакты реле КР1 и КРТ2 замкнуты. При перегрузке двигателя реле (одно или два) размыкают свои контакты, это вызывает обесточивание цепи катушки, Л1 и БК размыкаются, двигатель останавливается. Но тепловые реле обладают большей тепловой инерцией, и не могут защитить двигатель при коротком замыкании, поэтому включаются плавкие предохранители ПП.