4.1. Общие признаки вынужденных механических и электромагнитных колебаний
До сих пор мы изучали процессы в механических системах под действием сил, развивающихся в самих системах. Каково будет поведение колебательных систем, к которым тем или иным способом приложена внешняя сила? Для электромагнитного контура аналогичная ситуация возникнет, если в цепь контура включить внешний источник ЭДС.
Рассмотрим явление колебаний, если внешняя (вынуждающая) сила или внешняя ЭДС изменяется в зависимости от времени по гармоническому закону. При этом в системах возникнут колебания, характер которых в той или иной мере повторит характер вынуждающей силы или ЭДС источника. Такие колебания называются вынужденными.
Рассматривая свободные колебания в механической и электромагнитной системах, мы убедились в полной аналогии законов колебаний. Такое же сходство наблюдали для механических и электромагнитных затухающих колебаний. Следует ожидать аналогии законов в механической и электромагнитной системах и при вынужденных колебаниях.
4.1. Общие признаки вынужденных механических и электромагнитных колебаний
1. Рассмотрим вынужденные механические колебаний пружинного маятника, на который действует внешняя (вынуждающая) периодическая сила . Силы, которые действуют на маятник, однажды выведенный из положения равновесия, развиваются в самой колебательной системе. Это сила упругости и сила сопротивления .
Закон движения (второй закон Ньютона) запишется следующим образом: .
Разделим обе части уравнения на m, учтем, что , и получим дифференциальное уравнение вынужденных колебаний:
.
Обозначим (β – коэффициент затухания), (ω0 – частота незатухающих свободных колебаний), сила, действующая на единицу массы. В этих обозначениях дифференциальное уравнение вынужденных колебаний примет вид:
.
Это дифференциальное уравнение второго порядка с правой частью, отличной от нуля. Решение такого уравнения есть сумма двух решений
.
– общее решение однородного дифференциального уравнения, т.е. дифференциального уравнения без правой части, когда она равна нулю. Такое решение нам известно – это уравнение затухающих колебаний, записанное с точностью до постоянной, значение которой определяется начальными условиями колебательной системы:
, где .
Мы обсуждали ранее, что решение может быть записано через функции синуса.
Если рассматривать процесс колебаний маятника через достаточно большой промежуток времени Δt после включения вынуждающей силы (Рисунок 22), то затухающие колебания в системе практически прекратятся. И тогда решением дифференциального уравнения с правой частью будет решение .
Решение - это частное решение неоднородного дифференциального уравнения, т.е. уравнения с правой частью. Из теории дифференциальных уравнений известно, что при правой части, изменяющейся по гармоническому закону, решение будет гармонической функцией (sin или cos) с частотой изменения, соответствующей частоте Ω изменения правой части:
,
где Аампл. – амплитуда вынужденных колебаний, φ0 –сдвиг фаз, т.е. разность фаз между фазой вынуждающей силы и фазой вынужденных колебаний. И амплитуда Аампл., и сдвиг фаз φ0 зависят от параметров системы (β, ω0) и от частоты вынуждающей силы Ω.
Период вынужденных колебаний равен . График вынужденных колебаний на Рисунке 4.1.
Рисунок 4.1 – График вынужденных колебаний.
2. Электромагнитные вынужденные колебания.
Электромагнитная система, в которой развиваются вынужденные колебания, - это LCR – контур с включенным в него внешним источником. Рассмотрим случай, когда ЭДС источника изменяется по гармоническому закону:
.
Конденсатор, как рассматривалось ранее, заряжен и при его разрядке в контуре будет идти изменяющийся по времени электрический ток, что вызовет появление в катушке индуктивности ЭДС индукции (). Согласно второму закону Кирхгофа имеем:
,
где UC, UR – соответственно падение напряжения на конденсаторе и активном сопротивлении.
Учитывая, что , где I – сила тока в контуре, , где q – величина заряда на одной из обкладок конденсатора, - ЭДС индукции, запишем закон Кирхгофа в виде:
.
Записывая соотношения и , и преобразуя уравнение для закона Кирхгофа, мы получим дифференциальное уравнение вынужденных электромагнитных колебаний в виде:
Окончательно дифференциальное уравнений (при использовании обозначений , ) примет вид:
.
Вид дифференциального уравнения вынужденных электромагнитных колебаний такой же, как и вид дифференциального уравнения для вынужденных колебаний в механической системе. Это дифференциальное уравнение второго порядка с правой частью, поэтому все, что говорилось относительно его решений для механических колебаний верно и для электромагнитной системы. Сначала в системе возникнут и затухающие, и вынужденные колебания, но спустя некоторый промежуток времени, переходный процесс закончится и в системе установятся вынужденные колебаний с той же частотой, что и частота изменения ЭДС источника:
.
φ0 - сдвиг фаз между изменением заряда конденсатора и действием внешней ЭДС источника.
4.2. Зависимости амплитуды вынужденных колебаний и сдвига фаз от частоты внешнего воздействия. Резонанс
1. Вернемся к механической системе пружинного маятника, на который действует внешняя сила, изменяющаяся по гармоническому закону. Для такой системы дифференциальное уравнение и его решение соответственно имеют вид:
, .
Проанализируем зависимость амплитуды колебаний и сдвига фаз от частоты внешней вынуждающей силы, для этого найдем первую и вторую производную от х и подставим в дифференциальное уравнение.
,
,
Воспользуемся методом векторной диаграммы. Из уравнения видно, что сумма трех колебаний в левой части уравнения (Рисунок 4.1) должна быть равна колебанию в правой части. Векторная диаграмма выполнена для произвольного момента времени t. Из нее можно определить .
Рисунок 4.1
,
.
Учитывая значение , ,, получим формулы для φ0 и Аампл. механической системы:
,
.
2. Исследуем зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы и величины силы сопротивления в колеблющейся механической системе, по этим данным построим график . Результаты исследования отражены в Рисунке 4.2, по ним видно, что при некоторой частоте вынуждающей силы амплитуда колебаний резко возрастает. И это возрастание тем больше, чем меньше коэффициент затухания β. При амплитуда колебаний становится бесконечно большой .
Явление резкого возрастания амплитуды вынужденных колебаний при частоте вынуждающей силы, равной , называется резонансом.
Кривые на Рисунке 4.2 отражают зависимость и называются амплитудными резонансными кривыми.
Рисунок 4.2 – Графики зависимости амплитуды вынужденных колебаний от частоты вынуждающей силы.
3. Используем данные об амплитуде и сдвиге фаз вынужденных колебаний для механической системы и выразим эти же характеристики для аналогичных величин электромагнитной системы (LCR– контур с включенным в его цепь внешним источником ЭДС, величина которой изменяется по гармоническому закону):
,
.
5. Сила тока при установившихся в контуре колебаниях равна:
,
где - амплитуда силы тока, ψ0 – сдвиг фаз между силой тока и внешнейЭДС в контуре. Амплитуда силы тока и ψ0 находятся по формулам:
,
, .
График зависимости представлен на Рисунке 4.3.
Рисунок 4.3