6.3.1. Требования к импульсным модуляторам

6.3.2. Принципы генерирования мощных модулирующих импульсов

6.3.3. Коммутирующие устройства

6.3.3.1. Коммутирующие устройства на электронных лампах

6.3.3.2. Коммутирующие устройства на газоразрядных приборах

6.3.3.3. Коммутирующие устройства на тиристорах

6.3.4. Накопители энергии

6.3.4.1. Применение конденсатора в качестве ёмкостного накопителя энергии

6.3.4.2.Линии с распределенными постоянными и искусственные линии как емкостные накопители энергии

6.3.1. Требования к импульсным модуляторам

Импульсные модуляторы, используемые в передатчиках с импульсной анодной модуляцией, должны обеспечивать:

  • заданную мощность импульсов (достигающую сотен и даже тысяч киловатт) при высоком КПД модулятора;
  • требуемую форму импульсов;
  • минимальную мощность управления модулятором;
  • удобство и надежность эксплуатации, малую зависимость от внешних условий температуры окружающей среды, давления и т.п., а также по возможности малые габариты, вес и стоимость модулирующего устройства в целом.

Рис.6.5

Форма импульсов на выходе модулятора (рис.6.5) имеет большое значение:

от формы импульсов на выходе радиолокационного передатчика зависят точность определения дальности и разрешающая способность станции. Требования к форме импульсов зависят от типа модулируемого генератора СВЧ.

Для обеспечения нормальной работы магнетронного генератора длительность фронта tф модулирующего импульса должна быть порядка (0,1¸0,2)t, а длительность спада tс – (0,2¸0,4) t, где t - длительность импульса. Нестабильность напряжения на вершине импульса не должна превышать 3%, в некоторых случаях для обеспечения малой величины электронного смещения частоты магнетрона даже 1%. Кроме того, недопустимо наличие значительных послеимпульсных осцилляций, так как из-за них на выходе передатчика могут появиться нежелательные высокочастотные импульсы, которые будут иметь место в то время, когда излучение должно отсутствовать.Поскольку у магнетронного генератора заземляется анод (из-за удобства подключения антенного фидера и системы охлаждения, а также из условий безопасности), то полярность модулирующих импульсов должна быть отрицательной относительно земли.

При модуляции триодных генераторов СВЧ требования к форме модулирующих импульсов ниже, чем при модуляции магнетронных генераторов, поскольку частота и мощность триодных генераторов СВЧ значительно меньше зависят от изменения анодного напряжения, чем у магнетронных генераторов, а форма высокочастотных импульсов приблизительно повторяет форму модулирующих импульсов. Поэтому допустимая нестабильность напряжения b на вершине импульса может достигать 1,0¸12%. Длительность фронта и спада модулирующих импульсов определяется требованиями к высокочастотным импульсам и техническими возможностями схемы модулятора. Полярность модулирующих импульсов для триодного генератора СВЧ должна быть положительной относительно земли, поскольку катод генераторной лампы заземляется по постоянному току.

6.3.2. Принципы генерирования мощных модулирующих импульсов

Как указывалось выше, специфика импульсной работы передатчиков заключается в том, что они работают в течение весьма коротких промежутков времени длительностью микросекунды, отдавая мощность, достигающую в ряде случаев десятков мегаватт, после чего следует длительная пауза, когда генератор заперт. Это приводит к идее создания таких схем импульсных модуляторов, которые были бы способны отдаваемую ими в импульсе энергию накапливать за время паузы. Блок-схема такого модулятора показана на рис.6.6. Основными элементами этой схемы являются накопитель энергии и коммутирующий прибор. В схеме можно выделить две главные цепи: зарядную (она показана пунктиром) и разрядную. Во время паузы между импульсами в модуляторе происходит накопление энергии. Эта энергия запасается в накопителе, который при разомкнутом коммутирующем приборе заряжается от источника питания. Управляемый подмодулятором коммутирующий прибор замыкает во время импульса цепь разряда, и накопитель отдает запасенную во время паузы энергию генератору СВЧ. Ограничительное сопротивление в схеме рис.6.6 установлено для того, чтобы в момент замыкания коммутирующего прибора, когда сопротивление последнего очень мало, не закоротить источник постоянного напряжения при разряде накопителя. Цепь заряда должна замыкаться через зарядное устройство, сопротивление которого кратковременным токам разряда много больше эквивалентного сопротивления генератора СВЧ, поэтому накопитель не разражается через параллельную зарядную цепь.

С энергетической точки зрения модулятор является трансформатором мощности. В самом деле, мощность Рист, потребляемая накопителем от источника питания, равна:

Рист = ηз ,

где Wнак- энергия, получаемая накопителем от источника питания, ηз– КПД зарядной цепи, Т – период следования импульсов. Мощность Рг, которую получает генератор СВЧ во время импульса, равна:

Рг= ηрWнак/τ =ηрηзРистT/τ = ηрηзРистq ,

где hр- КПД разрядной цепи, а q – скважность. Таким образом, благодаря применению накопителя энергии мощность Рг, получаемая генератором СВЧ во время импульса, в (qhзhр) раз больше мощности, отдаваемой источником питания. Обычно hз и hр= 0,7-0,9, q - порядка 1000. Это даёт возможность использования источников питания малой мощности.

Рассмотрим основные элементы схемы импульсного модулятора - коммутирующие устройства и накопители.

6.3.3. Коммутирующие устройства

Коммутирующие устройства - коммутаторы - в схемах импульсных модуляторов работают либо на замыкание, либо на размыкание. Основное требование, которое предъявляется к коммутатору, заключается в том, что его внутреннее сопротивление должно быть минимальным при замыкании и бесконечно большим при размыкании. Из рис.6.6 видно, что во время разряда накопителя напряжение делится между генератором и внутренним сопротивлением коммутатора, при этом на последнем теряется мощность. При этом в коммутаторе теряется мощность Рк, которая при прямоугольном импульсе, когда ток во время импульса можно считать постоянным, равна

Рк=UкIр ,

где Iр – разрядный ток, Uк – падение напряжения на коммутаторе. Мощность, которая передается генератору равна:

Рг=UгIр =Iр(Uн - Uк) .

Здесь Uн – напряжение на накопителе, Uг- напряжение на генераторе. Тогда КПД разрядной цепи равен:

ηр =

Таким образом, КПД разрядной цепи тем выше, чем меньше падение напряжения на коммутаторе во время разряда, то есть чем меньше его сопротивление при замыкании. Наряду с этим к коммутирующим устройствам предъявляют также следующие технические требования:

  • время срабатывания коммутатора и время восстановления его управляющих свойств должны быть как можно меньше, так как от этого зависят длительность фронта импульсов и частота их следования;
  • коммутатор должен выдерживать высокие напряжения, достигающие десятков киловольт, и пропускать импульсные токи порядка десятков и сотен ампер;
  • коммутатор должен срабатывать от импульсов возможно меньшей мощности;
  • параметры коммутатора должны быть стабильными во времени и не зависеть от температуры окружающей среды; и др.

Наиболее широкое применение в качестве коммутаторов имеют электронные лампы и газонаполненные приборы. И те, и другие могут коммутировать большие мощности, достигающие у ламп десятков мегаватт, а у газонаполненных приборов - ста и более мегаватт. В качестве коммутаторов используют также полупроводниковые приборы тиристоры, позволяющие коммутировать мощности до нескольких мегаватт. Рассмотрим особенности этих коммутаторов.

6.3.3.1. Коммутирующие устройства на электронных лампах

Как коммутирующий прибор электронная лампа обладает следующими достоинствами:

1. Электронная лампа является коммутирующим прибором, работающим как на замыкание, так и на размыкание цепи разряда накопителя энергии.

2. Коммутирующие устройства на электронных лампах по существу являются безынерционными. Это позволяет точно управлять началом и окончанием каждого импульса. Благодаря своей безынерционности электронные коммутаторы способны коммутировать импульсы практически любой длительности и частоты повторения. Форма импульсов в модуляторах с электронными коммутаторами определяется главным образом формой управляющих импульсов в цепи сетки электронной лампы и может быть получена весьма близкой к прямоугольной.

3. Электронные лампы выдерживают напряжения достигающие десятков киловольт.

4. Параметры электронных ламп практически не зависят от времени и от температуры окружающей среды.

Наряду с этим электронные коммутаторы обладают и рядом недостатков, главными из которых являются:

1. Сравнительно большое внутреннее сопротивление электронной лампы, что снижает КПД модулятора в процессе разряда.

2. Относительно небольшой ток эмиссии катода, что ограничивает величину пропускаемого импульсного тока. Для увеличения коммутируемого тока приходится включать лампы параллельно (до шести-восьми штук). Поэтому при формировании импульсов большой мощности (более 1000 кВт) схема модулятора усложняется, и надежность ее работы снижается.

3. Для надежного запирания лампы на ее сетку должно быть подано отрицательное напряжение, превышающее напряжение запирания , которое определяется по спрямленной анодносеточной характеристике. Однако, чрезмерное увеличение отрицательного напряжения на управляющей сетке лампы приводит к увеличению необходимой амплитуды импульса, отпирающего лампу, а также к увеличению выходной мощности подмодулятора и напряжения между управляющей сеткой и катодом лампы. Обычно, величину напряжения смещения выбирают в пределах (1,2¸1,5), при этом анодный ток во время паузы не превышает значения 0,001% от импульсного тока. Рабочую точку коммутаторной лампы во время импульса выбирают в граничном режиме - точка В на характеристике лампы (рис.6.7). При работе в перенапряженном режиме (точка А) велик сеточный ток, а следовательно и мощность подмодулятора; при работе в недонапряженном режиме (точка С) велико падение напряжения на лампе. Кроме того, даже небольшое возрастание тока iа приводит к значительному увеличению падения напряжения на лампе и завалу плоской вершины модулирующего импульса.

Рис.6.7

В качестве коммутаторных ламп обычно используются тетроды, так как у них величина запирающего напряжения и сеточного тока меньше, чем у триодов.

6.3.3.2. Коммутирующие устройства на газоразрядных приборах

Коммутирующие устройства на газоразрядных (ионных) приборах - тиратронах и разрядниках - являются более экономичными, чем на электронных лампах. В отличие от электронной лампы эти приборы способны пропускать импульсные токи, достигающие тысяч ампер при малом падении напряжения на электродах, прячем, цепи их управления (цепь поджига разрядника, сеточная цепь тиратрона) потребляют весьма малую мощность. В результате модуляторы с ионным коммутатором имеют меньшие габариты и более высокий КПД, чем с электронным.

Основной недостаток ионных коммутаторов заключается в том, что они могут работать только на замыкание. После поджига такой коммутатор становится неуправляемым. У модуляторов с ионными коммутаторами форма и длительность импульсов на выходе не зависят от поджигающего импульса, а определяются свойствами цепи разряда, то есть практически свойствами накопителя. Кроме этого, коммутаторы на ионных приборах обладают и рядом других недостатков:

  • не выдерживают высоких напряжений, что приводит к необходимости включать их последовательно;
  • обладают довольно значительным временем деионизации, что затрудняет их использование при высокой частоте повторения импульсов;
  • имеют разброс по времени оформления разряда, а также разброс потенциала зажигания;

Разряд через тиратрон прекращается при уменьшении анодного напряжения более, чем на 20% от начального значения.

Наиболее приспособленными для работы в качестве коммутаторов в импульсных устройствах являются разработанные специально для этой цели водородные тиратроны. Падение напряжения на них при замыкании не превышает 2% от напряжения накопителя; их внутреннее сопротивление в импульсе составляет всего несколько десятков Ом (у электронных ламп оно на порядок выше), поэтому КПД разрядной цепи достигает 98%. Кроме того, водородные тиратроны имеют очень малое время ионизации - от 0,02 до 0,07 мкс - и деионизации - порядка 10мкс. Это позволяет коммутировать импульсы малой длительности (несколько десятых микросекунды) с достаточно высокой частотой повторения (до десятков килогерц). Водородные тиратроны имеют положительную пусковую характеристику, поэтому они не требуют отрицательного напряжения смещения на сетке для запирания во время пауз. Зажигание производится положительными импульсами сравнительно малой мощности с амплитудой напряжения около 200В, причем, имеет значение крутизна фронта этих импульсов, поскольку от нее зависит разброс во времени оформления разряда. При амплитуде поджигающих импульсов 200 В и скорости нарастания напряжения на сетке 300 В/мкс разброс времени оформления разряда не превышает 0,04 мкс. Увеличение скорости нарастания в несколько раз при некотором увеличении управляющего импульса позволяет в необходимых случаях резко уменьшить разброс. Анодный ток тиратрона продолжается до тех пор, пока напряжение на его аноде не уменьшится до значения напряжения погасания, которое у большинства водородных тиратронов не превышает 10-20 В. Параметры и пусковая характеристика водородных тиратронов мало зависят от окружающей температуры. Наибольшее напряжение, допускаемое на аноде водородного тиратрона, достигает десятков киловольт. Для увеличения коммутируемой мощности тиратроны выполняют в металлокерамическом оформлении. Так, металлокерамический водородный тиратрон ТГИI-5000/50 отечественного производства работает при анодном напряжении 50 кВ, коммутируемый ток равен 5000А при среднем токе 10А.

6.3.3.3. Коммутирующие устройства на тиристорах

Тиристор представляет собой полупроводниковый прибор, основу которого составляет четырехслойная структура типа р-n-р-n (рис.6.8а). Электрод, обеспечивающий электрическую связь с внешней n-областью называют катодом, а с внешней р-областью - анодом. С внутренней р-областью соединен управляющий электрод. Изготавливают тиристорные структуры из кремния.

Тиристор является управляемым прибором, имеющим два устойчивых состояния - открытое и закрытое. Вольтамперная характеристика тиристора, изображенная на рис.6.8б, имеет S-образную форму. На участке 1 анодный ток весьма мал (от нескольких десятых до 20-30 мА), и прибор можно считать выключенным.

Рис.6.8

Участок 3 аналогичен характеристике обычного полупроводникового диода: прибор находится во включенном состоянии с остаточным напряжением порядка единиц вольт при токах, достигающих тысяч ампер, которые ограничиваются только максимально допустимой мощностью рассеяния. Прямое переключение тиристора имеет место при анодном напряжении, равном (точка перегиба между участком 1 и участком 2, где тиристор имеет отрицательное сопротивление). Это напряжение достигает единиц киловольт. Как видно из рис.10б, при увеличении управляющего (пускового) тока оно уменьшается. Обычно переклюючение тиристора в открытое состояние производится подачей отпирающего импульса тока в цепь управляющего электрода. При обратном переключении тиристора из проводящего состояния в закрытое анодный ток уменьшается до значения тока удержания (рис.6.8б), который невелик - десятки и сотни миллиампер.

При >0, как это обычно бывает на практике, для обратного переключения прибора достаточно уменьшить рабочий ток, протекающий через тиристор, до значения < на время , где - время выключения тиристора. Обратное переключение возможно также при изменении на определенное время полярности напряжения на аноде. Регулировка длительности импульса на нагрузке возможна при запирании тиристора с помощью вспомогательных ключей и дополнительных источников напряжения, а также с помощью коммутирующих реактивных элементов - накопителей энергии (например, энергии предварительно заряженного конденсатора). Включение и выключение так называемого запираемого тиристора производится подачей на его управляющий электрод импульсов положительной (для отпирания) или отрицательной (для запирания) полярности.

Важным параметром тиристора является скорость переключения. Она определяется временем включения к временем выключения. Современные импульсные тиристоры имеют время включения от сотых до единиц микросекунд, а время выключения обычно на порядок больше. Рабочее напряжение у них достигает 2 кВ, а ток - 2000 А. Мощные тиристоры на токи в сотни ампер имеют принудительное охлаждение. Для получения большего напряжения или большего тока тиристоры можно соединять последовательно и параллельно, но при этом должны быть приняты меры, обеспечивающие равномерное распределение токов и напряжений между приборами во избежание их перегрузок.

Достоинством тиристоров является возможность управления не только моментом их включения, но и выключения, что позволяет регулировать длительность импульса в нагрузке. Тиристоры обладают высокой надежностью и долговечностью, постоянно готовы к действию, имеют малые габариты и высокую экономичность.

Недостатками тиристоров является значительно меньшая по сравнению с электронными лампами и водородными тиратронами импульсная мощность, а также большая инерционность.

6.3.4. Накопители энергии

Рис.6.9

Как указывалось выше, в импульсном модуляторе во время пауз между импульсами происходит накопление энергии в накопителе. Энергия в накопителях может запасаться либо в электрическом поле емкости, либо в магнитном поле индуктивности, поэтому в качестве накопителя могут быть использованы емкости, индуктивности, а также различные их комбинации. Наибольшее распространение имеют ёмкостные накопители. Рассмотрим основные типы этих накопителей, обращая при этом внимание на следующее:

  • на форму импульса, подаваемого на генератор СВЧ при разряде накопителя;
  • мощность, или энергию, отдаваемую накопителем генератору СВЧ;
  • КПД накопителя;
  • требования к коммутирующему прибору.

6.3.4.1. Применение конденсатора в качестве ёмкостного накопителя энергии

Структурная схема модулятора с конденсатором в качестве емкостного накопителя показана на рис.6.9а. Во время пауз между импульсами коммутирующий прибор разомкнут, и конденсатор С заряжается через сопротивление от источника постоянного тока Е, накапливая энергию. При замыкания коммутатора во время действия импульса конденсатор разряжается на генератор СВЧ, отдавая ему накопленную за время паузы энергию. Возможны два режима работы накопительного конденсатора: режим частичного разряда, когда за время импульса конденсатор разряжается частично, отдавая генератору СВЧ лишь небольшую часть накопленной энергии; режим полного разряда, когда во время импульса конденсатор разряжается полностью, отдавая всю накопленную энергию. Изменение напряжения на накопительном конденсаторе при частичном разряде показано на рис.6.9б. Энергия, получаемая конденсатором во время импульса определяется формулой:

Wc=0,5C(). КПД зарядной цепи равен: ηз = , где Wиcт – энергия, отдаваемая источником питания накопителю – конденсатору - во время паузы. При τ<<Т можно считать, что Wиcт =Eqзар, где qзар – заряд, полученный конденсатором от источника питания, он равен: qзар =С(Ucmax – Ucmin), тогда: Wс= 0,5(Ucmax + Ucmin) qзар = Uc ср/Е.

При этом КПД зарядной цепи равен:

То есть КПД цепи заряда определяется отношением среднего напряжения на конденсаторе к напряжению источника питания.

Для получения импульса на нагрузке, по форме близкого к прямоугольному, относительное изменение напряжения на конденсаторе b должно быть мало:

, (6.1)

где

Ucmax = E (1- ). (6.2)

Поскольку обычно , то при частичном разряде накопительного конденсатора КПД зарядной цепи достигает 90-95%, при этом форма импульса на нагрузке близка к прямоугольной. Можно показать, что емкость накопительного конденсатора определяется формулой:

, (6.3)

где - сопротивление нагрузки (генератора).

Для осуществления режима частичного разряда накопительного конденсатора необходим коммутатор, работающий и на замыкание, и на размыкание. При таких условиях в качестве коммутатора может быть использована электронная лампа.

Режим полного разряда накопительного конденсатора может обеспечить получение модулирующих импульсов большой мощности при более простой схеме подмодулятора и при использовании коммутирующего прибора, работающего только на замыкание. Последнее позволяет использовать в качестве коммутирующего прибора не электронную лампу, а тиратрон. Однако, при полном разряде обычного конденсатора импульс напряжения на нагрузке не прямоугольный, а остроконечный (рис.6.9в), и КПД зарядной цепи, как следует из формул (6.1) и (6.2), получается низким. По этим причинам режим полного разряда накопительного конденсатора не применяется.

6.3.4.2. Линии с распределенными постоянными и искусственные линии как емкостные накопители энергии

Недостатки простого емкостного накопителя, работающего в режиме полного разряда, могут быть устранены при использовании более сложных емкостных накопителей, а именно – накопительных искусственных линий. При этом все преимущества использования полного разряда сохраняются. Импульсные модуляторы с искусственными линиями широко применяются на практике.

Рис.6.10

В однородной линии с распределенными постоянными, заряженной до некоторого напряжения Е, сосредоточен запас электростатической энергии Wc=0,5lE2 , где С` -погонная ёмкость линии, l - её длина, то есть С`l=Cл - полная ёмкость линии. Таким образом, эта линия представляет собой емкостный накопитель энергии, как обычный конденсатор.

Известно, что разомкнутая на обоих концах линия с распределёнными постоянными длиной l и волновым сопротивлением r, заряженная до напряжения Е, будучи замкнута на нагрузку R (рис.6.10), выделяет на этой нагрузке напряжение, величина и форма которого зависят от соотношения между величинами R и r. Разрядная волна характеризуется током I1=Ir= и напряжением U1= I1r, или U1=r. Поскольку при разряде линии напряжение на нагрузке Ur=E-U1, то нетрудно показать, что

, (6.4)

(6.5)

Последние два выражения показывают, что линия в процессе разряда ведет себя по отношению к нагрузочному сопротивлению R как источник ЭДС E c внутренним сопротивлением r (рис.6.11). Напряжение на линии равно:

Рис.6.11

При t=, где v - скорость распространения волны в линии, после того, как разрядная волна, достигнув разомкнутого конца линии, отразится от него и вернется к началу линии, т.е. после двукратного прохождения разрядной волны, остаточное напряжение на линии станет равным Е' = E - 2Ur, или:

. (6.6)

Из (6.4) и (6.6) следует, что при R =r на нагрузке выделяется прямоугольный импульс с амплитудой UR=E/2 и длительностью t==, при этом остаточное напряжение на линии Е'=0; когда R >r напряжение на нагрузке Ur, > E/2, остаточное напряжение Е' имеет ступенчатую форму одной полярности, длительность каждой «cтупеньки» равна t; при R< r напряжение Ur < E/2, а Е' имеет знакопеременную ступенчатую форму (рис.6.12).

Итак, если R¹r, то при t=2l/v линия еще заряжена до напряжения , и процесс разряда повторяется до тех пор, пока она не разрядится полностью.

Таким образом, заряженный до некоторого напряжения разомкнутый на конце отрезок линии с распределёнными постоянными позволяет получить при разряде на согласованную нагрузку напряжение, имеющее прямоугольную форму. Амплитуда импульса равна половине величины напряжения, до которого была заряжена линия, а его длительность t - удвоенному времени пробега разрядной волны вдоль линии длиной l, т.е. t=2l/v. Поскольку скорость распространения волны в воздушной линии равна скорости света с=3×108 м/сек, то при заданных значениях Uн, R и t расчет параметров линии не составляет труда. Однако, для получения коротких импульсов длина линии чересчур велика: при t=1мкс l=150м! Поэтому на практике применяются искусственные линии, составленные из ряда ячеек с сосредоточенными параметрами L и C. Наиболее употребительная схема искусственной линии показана на рис.6.13. Свойства искусственных линий отличаются от свойств линий с распределенными постоянными, но приближаются к ним при увеличении числа ячеек, из которых составлена искусственная линия. Для искусственной линии (рис.6.13), составленной из N ячеек, длительность импульса равна:

t = 2l= 2 =2N,

где и- индуктивность и ёмкость одной ячейки, а Lл и Cл - полные индуктивность и ёмкость линии. Волновое сопротивление этой линии равно:

r = .

Тогда:

СЛ= и LЛ= ,

откуда

,

. (6.7)

Рис. 6.12

Обычно искусственные линии проектируют на волновые сопротивления от до 25 до 80 Ом. При больших мощностях выгодно выбирать низкое волновое сопротивление для уменьшения напряжения на линии. Искусственные линии с большими волновыми сопротивлениями не применяются, так как емкости ячеек оказываются очень малыми, соизмеримыми с емкостями монтажа.

Рис.6.13

По этой же причине число ячеек, из которых составлена искусственная линия, обычно не превышает 6.

Рис.6.14

Форма импульсов, создаваемых искусственными линиями на согласованном нагрузочном сопротивлении, заметно отличается от прямоугольной. Нарастание и спад импульса происходят с конечной скоростью. Вершина импульса не плоская, а волнистая, причем, максимальная величина пульсаций достигает 10% и мало зависит от числа ячеек. От числа ячеек N зависят длительности фронта tф и длительности спада tс импульса, которые тем меньше, чем больше ячеек. Число ячеек выбирают, исходя из требуемой длительности фронта:

N @ 0,4 (6.8) Длительность спада импульса равна: tс @ 2tф (6.9) На рис.6.14 показана форма импульсов разряда искусственной линии на согласованную нагрузку при числе ячеек N=2, 3 и 4.