6.1. Условия производства работ. Прокладка ОК кабелеукладчиком

6.2. Прокладка ОК в предварительно проложенные в грунт защитные пластмассовые трубы методом задувки

6.3. Прокладка ОК через водные преграды

6.4. Пересечение подземных коммуникаций методом горизонтального направленного бурения

6.5. Рекультивация земель при строительстве ВОЛП

6.1. Условия производства работ. Прокладка ОК кабелеукладчиком

Прокладка кабеля в грунт производится при температуре окружающего воздуха не ниже -10°С. Кабель прокладывают в грунтах всех категорий, кроме подверженных мерзлотным деформациям, в воде при пересечении неглубоких болот, несудоходных и несплавных рек со спокойным течением (с обязательным заглублением в дно водных преград). Способы прокладки ОК через болота и водные преграды должны определяться отдельными проектными решениями.

Возможны два способа прокладки ОК в грунт: ручной в ранее отрытую траншею или бестраншейный с помощью ножевых кабелеукладчиков. Кроме того, ОК может прокладываться с применением защитного трубопровода. При этом различают два способа. При первом способе сначала в грунт укладывается защитный трубопровод (полиэтиленовая труба с внешним диаметром до 34 мм), а затем затягивается ОК. Второй способ - это прокладка защитного трубопровода с заранее уложенным в него ОК.

Трассовая прокладка кабелей связи является сложным процессом в техническом и организационном плане. Этот процесс еще более усложнен для ОК, имеющих большие строительные длины. Он требует от линейного персонала тщательного изучения местности и условий трассы, четкой и продуманной подготовительной работы, технологически обоснованного проекта производства работ и строгой исполнительской дисциплины. Особое внимание уделяется выбору трассы, способам и средствам прокладки ОК на каждом участке трассы. Для обеспечения безопасности прокладки и минимальной вероятности его замены в будущем необходимо учитывать такие факторы, как топографическая карта местности, типы грунтов, возможность доступа к кабелю при любых погодных условиях, простота выполнения возможного ремонта, удаления трассы кабеля от подземных коммуникаций и т.д.

Особую важность имеет рекультивация земли на трассе прокладки. Восстановительные работы должны производиться с особой тщательностью, чтобы гарантировать надежную защиту кабеля, сводя к минимуму явление эрозий почвы и обеспечивая восстановление травяного покрова и стабилизацию разрыхленного слоя грунта.

Учитывая трудности определения трассы прокладки ОК и мест их повреждения в дальнейшем, значительно большее внимание по сравнению с электрическими кабелями должно быть уделено точности привязок трассы кабеля к местным условиям.

Здесь следует также учитывать, что простой высокоскоростных ВОЛП, в случае повреждения кабеля, обходятся очень дорого.

Прокладка ОК кабелеукладчиком

Строительство магистральных и внутризоновых ВОЛП характеризуется большой протяженностью, различными климатическими, почвенно-грунтовыми и топографическими условиями. Прокладку ОК осуществляют комплексные механизированные колонны, в состав которых входят строительные машины и механизмы общестроительного назначения (тракторы, бульдозеры, экскаваторы и др.), а также специальные машины и механизмы для прокладки кабеля (кабелеукладчики, тяговые лебедки, пропорщики грунта, машины для прокола грунта под препятствиями и др.).

Бестраншейный способ прокладки кабеля с помощью кабелеукладчика благодаря высокой производительности и эффективности пока является основным. Он широко применяется на трассах с различными рельефами местности и разными грунтами. Для прокладки используются кабелеукладчики с активными и пассивными рабочими органами. С помощью ножевого кабелеукладчика в грунте прорезается узкая щель, и кабель укладывается на ее дно, на заданную глубину залегания (1,2…1,4 м). При этом на кабель действуют механические нагрузки. Кабель на пути от барабана до выхода из кабеленаправляющей кассеты подвергается воздействию продольного растяжения, поперечного сжатия и изгиба, а в случаях применения вибрационных кабелеукладчиков - вибрационному воздействию. В зависимости от рельефа местности и характера грунтов, конструкции и технического состояния кабелеукладчиков, а также режимов его работы, механические нагрузки на кабель могут изменяться в широких пределах.

На рис. 6.2 приведены графики изменения натяжения ОК на выходе из кассеты кабелеукладчика в зависимости от скорости прокладки, диаметра (номера) кабельных барабанов и строительной длины внутризонового кабеля марки ОЗКГ-1. Анализ этих графиков показывает, что скорость 3,3 км/ч, допустимая при прокладке электрических кабелей, в данном случае неприемлема. Для обеспечения условия непревышения допустимых растягивающих нагрузок при прокладке ОК она должна быть снижена. Область предельных скоростей прокладки ОК на рисунке заштрихована.

В табл. 6.1 приведены основные характеристики отечественных прицепных кабелеукладчиков, используемых при бестраншейной прокладке ОК. Возможно применение и других кабелеукладчиков при условии исключения превышения допустимых на ОК механических нагрузок.

Наиболее полно требованиям, которые предъявляются при прокладке ОК, отвечают отечественные кабелеукладчики опытного механического завода "Межгорсвязьстрой" КНВ-1 и КНВ-2, которые предназначены для работы на трассах любой протяженности, а также для работы в стесненных условиях, населенных пунктах, вблизи дорог, в лесу. КНВ-1 состоит из навесного вибрационного кабелеукладчика и специально оборудованного бульдозера. При прокладке кабеля обе машины соединяются тяговым канатом. Спецоборудование бульдозера состоит из бульдозерного отвала, П-образной коробчатого сечения рамы, на поперечной балке которой установлены две пары вилочных захватов для погрузки, разгрузки и установки на них барабанов.

В настоящее время получили применение кабелеукладчики КВГ-1 и КВГ-2 [1], которые в отличие от КНВ, где вибратор приводится в действие с помощью механического привода, имеют гидравлический привод. Кроме того, рабочий навесной орган КВГ-2 может смещаться от оси движения базового механизма, что крайне важно при работах в стесненных условиях.

Рис. 6.2. Изменение натяжения кабеля ОЗКГ-1 от скорости прокладки кабелеукладчиком: а - КУК-3М для l = 2 км; б - то же, КНВ; в - КУ-120 для различных строительных длин ОК.

Таблица 6.1. Основные характеристики кабелеукладчиков

Характеристика

Тип кабелеукладчика

 

КУК-3М

ЛПК-20-2

КУ-120В

КУК-4

КУК-5М

КУК-6

Оптимальная скорость прокладки ОК, км/ч

1,35

1,4

1,4

1,2

0,9

0,9

Устанавливаемые барабаны:

Число Номера барабанов, не более

2 (4)

17 (18)

2 (4)

17 (18)

2

18

4 (2)

18(22)

4(2)

18 (26)

2

20

Число одновременно прокладываемых ОК

1 … 4

1 или 2

1 или 2

1 ... 4

1 … 4

1 или 2

Число обслуживающего персонала, чел

3 …5

2

1 … 3

3 … 5

3 … 5

2

Кабелеукладчики КВГ по своим техническим возможностям не уступают зарубежным аналогам и имеют вибратор трехвальный, двухкамерный, одна из камер которого содержит одноступенчатый понижающий редуктор и приводные шестерни дебалансов, а другая - дебалансы, обеспечивающие необходимое возмущающее усилие. Рабочий орган устанавливается непосредственно на корпус вибратора, поэтому колебательная масса минимальна, что повышает амплитуду вибрации и, соответственно, эффект разработки грунта. Дополнительной тяговой машиной является трактор Т-170МБГ или специально оборудованный бульдозер. На рис. 6.3 показан общий вид кабелеукладчика КВГ-1.

Рис. 6.3. Общий вид кабелеукладчика КВГ-1.

При прокладке ОК кабелеукладчиком недопустимым является вращение барабана под действием натяжений кабеля, возникающих при движении кабелеукладчика по трассе. Особенно опасны рывки кабеля. Крайне неблагоприятным для кабеля может быть момент начала движения (трогания) кабелеукладчика, при котором не исключается разгон вращения барабана под действием натяжения кабеля. Рывки кабеля могут иметь место при прокладке в сложных грунтах, наличии препятствий в грунте, на трассе и т.п. Бестраншейная прокладка не может исключить возможные случаи непосредственного контакта прокладываемого ОК, имеющего полиэтиленовые оболочки, с острыми твердыми каменистыми включениями, оказывающими сосредоточенные боковые воздействия на кабель. На рис. 6.4 показан процесс прокладки кабеля при помощи кабелеукладчика на гусеничном ходу.

Для предотвращения превышения допустимых нагрузок на ОК при его прокладке необходимо обеспечить:

  • принудительное вращение барабана в момент начала движения кабелеукладчика и синхронизованную его размотку;
  • ограничение боковых давлений на кабель за счет применения различного рода мероприятий и конструкций, снижающих трение (например, использование в кассетах специальных роликовых направляющих устройств; обеспечивающих минимально допустимый радиус изгиба ОК; размещение роликов кассеты так, чтобы уменьшить радиальное давление на кабель);
  • допустимый радиус изгиба ОК от барабана до укладки на дно щели на всем участке подачи кабеля через кассету;
  • исключение случаев засорения кассеты кабелеукладочного ножа и остановок вращения барабана при движении кабелеукладчика.

Рис. 6.4. Прокладка кабеля кабелеукладчиком

Желательно применение соответствующих технических средств непрерывного контроля, сигнализирующих о достижении пороговых значений тяговых усилий и ограничивающих режимы нагружения кабеля с остановкой процесса прокладки.

Обязательной является планировка трассы перед прокладкой ОК бульдозером. Подъемы и уклоны трассы не должны превышать 30°. При прокладке ОК в сложных грунтах обязательно должна применяться предварительная пропорка грунта. Цель предварительной пропорки - обнаружение скрытых препятствий, которые могли бы повредить кабель. При обнаружении таких препятствий грунт на этих участках разрабатывается с помощью бурильных и взрывных работ, машин и механизмов для разработки траншей и т.п.

Способы прокладки кабеля в грунте должны чередоваться на трассе в зависимости от условий прокладки. Для отдельных участков трасс предварительно может укладываться жесткий защитный трубопровод, в который затем затягивается ОК. Для выбора способа прокладки может потребоваться исследование грунта. Перед началом работ необходимо проверить подготовку трассы. За проведением всех строительных работ должен осуществляться постоянный контроль, так как в случае наличия ошибок в проекте или плохой подготовке трассы строительному персоналу трудно исправить эти ошибки непосредственно в полевых условиях.

Прокладка ОК на переходах через подземные коммуникации. На пересечениях с шоссейными, железными дорогами, продуктопроводами и другими коммуникациями ОК затягивают в трубы, которые, прокладываются закрытым (горизонтальным проколом, бурением) или открытым способами. Прокладка труб под препятствиями, как правило, проводится до начала прокладки кабеля в районе пересечения. При этом необходимо отдавать предпочтение таким способам, при которых не требуется разрезать ОК. При подходе кабелеукладчика к подземному препятствию ОК сматывают с барабана и укладывают "восьмеркой". Затем протягивают кабель под препятствием в заготовленную трубу, снова наматывают на барабан, заряжают в кассету и продолжают прокладку.

Если под подземным препятствием труба не прокладывается, то проложить ОК без разрезания можно следующим способом. Под препятствием откапывают котлован, барабан с ОК снимают с кабелеукладчика и, освободив кабель от разборной кассеты, устанавливают на козлы перед препятствием. Кабелеукладчик перемещают за препятствие, опускают нож в котлован, заправляют предварительно протянутый под препятствием ОК в кассету и продолжают прокладку. Для предохранения кабеля от перегибов под препятствием устанавливают кабельное колено или ролики. При этом необходимо обеспечивать свободную подачу кабеля с барабана, установленного на козлах, и подтяжку кабеля, проходящего по поверхности земли.

Для сокращения трудоемкости работ на элементарных кабельных участках небольшой длины можно в местах пересечения с большим количеством подземных коммуникаций использовать укороченные строительные длины ОК, так называемые короткомеры, которые по согласованию с заказчиком могут поставляться в небольшом количестве с кабельных заводов.

В практике строительства ВОЛП все более широкое применение находят современные высокопроизводительные системы для прокладки ОК и трубопроводов с последующей прокладки в них ОК методом затягивания при помощи троса или методом задувки. На рис. 6.5 показан процесс прокладки ОК (пластмассовых трубопроводов) при помощи системы FSP 17 германской фирмы «HvF Хельмут фон Финтель», которая передвигается при помощи мощного тягоча (рис. 6.6).

Рис. 6.5. Прокладка ОК при помощи системы FSP 17 в полотно откоса на сложном участке трассы.

Важнейшим достоинством этой системы является возможность прокладки ОК в стесненных условиях, на откосах, сложных участках трассы, т.к. за счет гидравлического управления колесами система хорошо приспосабливается к местности.

Участки трассы с тяжелыми грунтами имеется возможность преодолеть с использованием мощной лебедки, которой оборудован тягач. В таких условиях тягач при помощи специального приспособления жестко фиксируется на местности и лебедкой (рис. 6.6) кабелеукладочная система преодолевает участки трассы с тяжелыми грунтами.

Рис. 6.6. Тягач, оборудованный мощной лебедкой.

Указанная система FSP 17 используется в Германии, Польше, России и в ряде других стран. Система отмечается высокой мобильностью и может заказываться для выполнения работ по прокладке ОК и пластмассовых трубопроводах. На рис. 6.7 показана транспортировка системы FSP 17 на специально оборудованном трейлере.

Рис. 6.7. Транспортировка системы FSP 17 на трейлере

6.2. Прокладка ОК в предварительно проложенные в грунт защитные пластмассовые трубы методом задувки

Общие положения

В предыдущем разделе рассмотрена прокладка ОК в предварительно проложенных полиэтиленовых трубах традиционным методом затягивания, так же, как и в телефонной канализации. Этот метод на практике применяется в основном в местах пересечения с большим числом подземных коммуникаций, сосредоточенных на отдельных участках кабельной трассы.

Впервые фирмой Dura-Line (США) разработаны для прокладки ОК специальные защитные пластмассовые трубки (ЗПТ) из полиэтилена высокой плотности, внутренняя поверхность которых покрывается твердой сухой смазкой на основе силикона. Эти трубы называются трубами «SILICORE» (рис. 6.8).

Коэффициент трения между внутренней поверхностью трубки и защитной полиэтиленовой оболочкой ОК составляет не более 0,1 (у обычной полиэтиленовой трубки типа ПНД или ПВД - порядка 0,29). Благодаря этому можно, используя специальные компрессорные установки, методом задувки с большой скоростью затягивать в трубку ОК строительными длинами 4-6 км (рис. 6.9).

Рис. 6.8. Защитная пластмассовая трубка, внутренний слой которой покрыт силиконом.

Рис. 6.9. Прокладка ОК в полиэтиленовой трубке методом задувки.

Этот метод прокладки ОК получил широкое применение при строительстве ВОЛП в США, Мексике, Центральной и Восточной Европе, Израиле, Китае и других странах. Внедряется этот метод и в России.

В настоящее время в России имеется инфраструктура, обеспечивающая производство и внедрение ЗПТ. Так, производство ЗПТ осуществляется рядом предприятий: ЗАО «Пластком»; ЗАО «МГСС-Тверьтрубпласт»; НПО «Стройполимер» и др. Опытом сооружения ВОЛП на основе ЗПТ и необходимым для этого оборудованием обладают ряд специализированных предприятий, в том числе акционерные общества «Лентелефонстрой» (г. Санкт-Петербург), «Межгорсвязьстрой» (г. Москва), «Телекомстрой» (г. Петрозаводск), ЗАО «ПМК-402» (г. Самара), ОАО «Связьстрой-4» (г. Саранск), ОАО Трест «Связьстрой-5» (г. Челябинск) и др.

Следует отметить, что особенно большой опыт прокладки ОК в ЗПТ имеется на железнодорожном транспорте страны. Впервые в России в 1996г. началась прокладка ОК в ЗПТ на скоростной железнодорожной магистрали Москва – Санкт-Петербург. Достаточно сказать, что из 5000км ОК, проложенных в стране в пластмассовых трубопроводах, 3000км – на железнодорожном транспорте.

Сегодня можно уверенно заявить, что появление оснащенных специальной техникой строительных организаций, отечественных материалов и оборудования, собственный опыт эксплуатации первых ВОЛП с трубопроводной прокладкой кабеля позволят более быстрыми темпами осваивать новую технологию строительства.

Трубки с внешним диаметром 25, 32, 40, 50 и 63 мм выпускаются соответственно строительными длинами от 0,6 до 4км на барабанах или в бухтах. Минимальный срок службы трубок - 50 лет. Пределы рабочих температур: эксплуатации и хранения трубки от -20°С до +60°С; прокладки трубки от -10°С до +50°С. Минимально допустимый радиус изгиба - 10 наружных диаметров. Вместе с трубками поставляются необходимые детали для соединения строительных длин и герметизации выводов ОК из трубки, соединительные муфты, инструмент. На рис. 6.10 показана ЗПТ в бухтах.

Применение метода задувки позволяет:

  • использовать относительно дешевые ОК без мощных бронепокровов строительными длинами 4 и более км;
  • повышение надежности работы ВОЛП за счет защитных свойств трубки от механических воздействий на ОК и от воздействия грызунов;
  • увеличить строительный сезон за счет разнесения во времени прокладки трубки на трассе, включая переходы через различные препятствия (газопровод, нефтепровод, водные преграды и т.д.) и задувки кабеля в трубке;
  • значительно снизить трудозатраты и срок прокладки ОК за счет существенного уменьшения количества перемоток ОК на пересечениях с подземными коммуникациями, которые неизбежны при прокладке кабеля с помощью кабелеукладчика;
  • снизить эксплуатационные затраты, учесть потребности дальнейшего развития телекоммуникационных сетей.

На кабельную трассу ЗПТ поставляются на барабанах или в бухтах определенной строительной длины в зависимости от диаметра ЗПТ, если поставка других длин не оговаривается контрактом. Каждый барабан или бухта сопровождаются паспортом, в котором указана фактическая строительная длина ЗПТ. Кроме того, на маркировке ЗПТ нанесен последовательный метраж ее длины, и в случае использования части ЗПТ легко определяется оставшаяся длина на барабане. Таким образом, вести учет расхода и наличия остатков строительных длин не представляет затруднений. Производить отбор и поставку длин ЗПТ следует в соответствии с проектной документацией, откорректированной на основании обследования и реального представления о прохождении трассы. Не следует безосновательно соединять ЗПТ из кусков. Все соединения ЗПТ, запланированные или внесенные по ходу прокладки, должны обязательно вноситься в карту маршрута. Поставляемые на строительство конкретной линии связи ЗПТ должны быть единого цвета, заданного документацией. Допускается несовпадение цветовой окраски ЗПТ в случае стыковки их с ЗПТ другого типоразмера, например, при стыковке с ранее построенным участком.

Все строительные длины ЗПТ на барабанах или в бухтах, поступившие на склад строительной организации, должны быть зарегистрированы в журнале учета и подвергнуты входным проверкам, в объем которых входит: визуальный контроль упаковки; визуальный контроль ЗПТ и замеры их овальности; проверка строительных длин ЗПТ на герметичность; проверка строительных длин ЗПТ по внутреннему диаметру.

Рис. 6.10. Защитные пластмассовые трубки в бухтах.

Последние две проверки проводят в случае возникновения сомнений или разногласий в оценке результатов внешнего осмотра или в результате повторяющихся выявлений дефектов нарушения герметичности или зауженности сечения трубки после ее прокладки.

По результатам проверок составляется протокол входного контроля ЗПТ, и номер протокола заносится в журнал учета поступившей продукции. Все проверки рекламируемых ЗПТ проводятся повторно в присутствии представителя заказчика.

Проложенные в грунт строительные длины ЗПТ, а также смонтированные с помощью пластмассовых муфт секции трубок подлежат испытанию воздушным избыточным давлением 150-250кПА (1,5-2,0кГ/см2) в течение 24 часов.

Задувка ОК в предварительно проложенную трубку производится после ее испытаний на герметичность. На стыке строительных длин ОК устанавливается смотровое устройство (камера доступа), в котором с двух сторон вводятся трубки и герметизируются вводные концы кабеля, размещают соединительную муфту, концевые запасы кабеля и, при необходимости, щиток контрольно-измерительных пунктов (КИП).

Щитки КИП устанавливают на ВОЛП через каждые 15-20 км для подключения выводов из соединительной муфты от металлического элемента каждого конца кабеля, что обеспечивает возможность поиска трассы прокладки кабеля на участке КИП-КИП и контроля целостности защитной пластмассовой оболочки.

Для прокладки ЗПТ и монтажа оптического кабеля разработаны специальные инструкции. Например, инструкция по прокладке и монтажу оптического кабеля в ПВП трубках «SILICORE» [17].

В практике находят также применение ЗПТ Чешской фирмы «SPUR». Эти ЗПТ отличаются от рассмотренных выше тем, что внутренняя поверхность трубы имеет продольную насечку, которая снижает коэффициент трения между внутренней поверхностью и оболочкой ОК до 0,047. Такие трубы представлены на рис. 6.11. В практике производства ЗПТ известны и другие методы снижения коэффициента трения за счет изменения геометрии внутренней поверхности трубки.

Рис. 6.11. Защитные полиэтиленовые трубы с продольными насечками.

Общие указания по прокладке ЗПТ

ЗПТ могут вводиться в трубы кабельной канализации или прокладываться непосредственно в грунт. Прокладка ЗПТ может производиться как бестраншейным способом, так и в открытую траншею. При проектировании необходимо стремиться к максимально возможной прямолинейности трассы, так как ЗПТ образует трубопровод для последующей прокладки в него оптического кабеля. При необходимых изменениях направления трассы радиус изгиба самой трассы с ЗПТ должен быть не менее 2 м. При прокладке ЗПТ кабелеукладчиком или укладке в открытую траншею не должны допускаться резкие перегибы ЗПТ. Рекомендуемый минимальный радиус изгиба составляет 1,5 м для облегчения работы с ЗПТ при прокладке. Прокладка ЗПТ должна осуществляться максимально возможными строительными длинами с минимальным количеством соединений. Выбор муфт для соединения строительных длин ЗПТ должен производиться с учетом применяемого способа ввода оптического кабеля в трубопровод. Рекомендуется использовать либо механические, либо электросварные муфты, что обеспечит необходимую герметичность соединений трубопровода и позволит осуществить пневмопрокладку оптического кабеля в трубопровод. Над ЗПТ, проложенными в грунте, должна укладываться сигнальная лента на глубине 0,5…0,7 м от поверхности земли с непрерывно чередующейся надписью о проложенном под ней объекте. Над всеми соединениями ЗПТ и контейнерами для оптических муфт, а также по трассе должны укладываться маркеры (либо другие устройства) для поиска трассы. Это особенно актуально при использовании полностью диэлектрического оптического кабеля.

Особенности прокладки оптических кабелей методом задувки в ЗПТ

В настоящее время оборудование для задувки ОК в ЗПТ выпускается многими фирмами. Рассмотрим задувку ОК с применение оборудования компании "CBS Products Ltd." – ведущего производителя оборудования для задувки кабеля в ЗПТ в Великобритании. Система для задувки оптического кабеля, позволяет укладывать кабель в трубку, используя силу сжатого воздуха. Данная технология хотя и является достаточно новой в отрасли, однако уже широко используется как зарубежными, так и российскими компаниями [28]. Система прошла испытания на трассах различной степени сложности. В ходе испытаний были получены результаты необходимых показателей давления подаваемого воздуха для достижения оптимальной дальности задувки. Величина 10-12 Бар для компрессора была выбрана как наиболее подходящая для задувки кабеля в трубку. Желательно также использование компрессоров, содержащих фильтр и систему охлаждения. Опробованы различные диаметры трубок и кабелей и выведено их оптимальное соотношение с точки зрения дальности задувки. Были проведены эксперименты по задувке кабеля в трубу с использованием только гидравлического давления без применения компрессора. И в этих условиях система успешно работает, хотя показывает значительно меньшую дальность задувки, что вполне обосновано.

В результате проведенных независимыми компаниями испытаний машина для задувки кабеля получила наивысшую оценку по степени надежности и дальности прохождения трассы, и была выбрана крупнейшим оператором Великобритании British Telecom в качестве единственной технологии для задувки кабеля для линий связи.

Комплексная система состоит из следующих элементов: машина для задувки кабеля; гидравлический привод; машина для укладывания кабеля кольцами. Машина для задувки кабеля и гидравлический привод могут использоваться в любой сети, где заложена трубка. Они поставляются в комплекте как блок для задувки (рис. 6.19). Машина для задувки оптического кабеля обеспечивает быстрый и надежный процесс прокладки кабеля. Данная машина состоит из системы приема-подачи сжатого воздуха в трубу с возможностью подвода оптического кабеля со скоростью до 90 м/мин., а также устройства для протягивания оптического кабеля.

Рис. 6.19. Машина для задувки оптического кабеля в ЗПТ.

Машина содержит кабелепротяжный механизм и измерительный блок. Кабелепротяжный механизм состоит из покрытых резиной или мягкой пластмассой гусениц. Сжатый воздух подается по аэродинамическому принципу в трубку и далее гидравлическая система подачи кабеля контролирует процесс его подачи в трубку. Электронная измерительная система позволяет выводить данные о скорости, расстоянии задувки и информацию о наличии каких-либо закупорок внутри трубки. Расстояние от устройства для вдувания кабеля до компрессора и барабана с кабелем не должно превышать 10 м.

Длина кабеля, вдуваемого с применением машины для задувки, устанавливается опытным путем в зависимости от траектории трассы, наличия подъемов или изгибов трассы. Барабан с кабелем может устанавливаться как в начале трубопровода, так и на трассе его прокладки. В связи с этим существует два варианта задувки кабеля.

Вариант первый. При установке барабана с кабелем в начале трассы прокладки кабеля (рис. 6.20) кабель вдувается в трубопровод на участке А-В (рис. 6.20,а). Излишняя длина укладывается методом «восьмерки». Вместо укладывания кабеля «восьмерки», которая имеет свои недостатки в силу того, что кабель загрязняется и имеет шанс повредиться, можно использовать машину для укладывания кабеля кольцами. В этом случае после укладки участка А-В излишняя длина укладывается на машину 1. Затем кабель перематывается с машины 1 на машину 2 (рисунок 6.20,б).

После прокладки кабеля на участке А-В устройство для вдувания и компрессор перемещаются к котловану у начала участка В-С, после чего производится вдувание кабеля в трубку, проложенную на этом участке.

При необходимости прокладки кабеля на третьем участке у конца этого участка устанавливается машина для укладывания кабеля кольцами, или кабель укладывается методом «восьмерки», и операции повторяются.

Вариант второй. При установке барабана с кабелем на трассе прокладки трубопровода (рис. 6.21) кабель с барабана вдувается в трубопровод на участке В-С.

Рис. 6.20. Первый вариант задувки кабеля в ЗПТ: 1 – барабан с кабелем; 2 – устройство для вдувания кабеля; 3 – компрессор; 4 – гидропривод; 5 – устройство для укладывания кабеля кольцами – 1; 6 - устройство для укладывания кабеля кольцами – 2.

Рис. 6.21. Второй вариант задувки кабеля в ЗПТ: 1 – барабан с кабелем; 2 – устройство для вдувания кабеля; 3 – компрессор; 4 – гидропривод; 5 – устройство для укладывания кабеля кольцами.

Остаток кабеля перематывается на машину для укладывания кабеля кольцами, или укладывается методом «восьмерки», а затем вдувается в трубопровод на участке В-А.

Машина для укладывания кабеля кольцами (рис. 6.22) укладывает до 2 км кабеля за один цикл, оставшийся на барабане кабель необходимо снять, чтобы извлечь конец кабеля, находящийся в самом низу. Оставшиеся 2 км кабеля на барабане укладываются в корзину машины для укладывания кабеля кольцами с использованием ремней задувочного комплекта. Дальний конец, снятый с кабельного барабана, помещается в задувочную машину, и 2 км кабеля из корзины задуваются в обратном направлении, чтобы завершить укладку кабеля.

Рис. 6.22. Машина для укладки кабеля кольцами.

Второй вариант задувки, имеет преимущество перед первым, так как требуется всего одна машина для укладки кабеля кольцами и меньшее количество раз приходится перематывать оптический кабель, что снижает вероятность его повреждения.

6.3. Прокладка ОК через водные преграды

В данном разделе рассматривается традиционная подводная прокладка как часть или отрезок подземной прокладки, когда приходится пересекать реки, ручьи, болота, озера, искусственные водоемы, каналы. По действующим нормам прокладка кабеля связи через судоходные реки, сплавные и несудоходные реки глубиной до 3 м проводится с минимальным заглублением до 1 м. Без заглубления прокладка допускается при глубине водоемов более 8 м по согласованию с организациями, эксплуатирующими водоем. Заглубление кабеля в дно оросительного канала и арыка является обязательным. Практически целесообразность заглубления кабеля и его величина определяются проектом.

Указанные требования распространяются также на ОК связи и соответственно на способы и приемы производства прокладочных работ: укладку кабелей с буксирных или самоходных судов, понтонов, барж в подводные траншеи. Для такой прокладки используются ОК с металлическими упрочняющими элементами и металлическими оболочками. Эти кабели более герметичны и их механические характеристики позволяют использовать традиционные технические средства прокладки. В процессе прокладки подводных кабелей вертикальный угол кабеля, когда он сходит с горизонтальной плоскости плавсредства, во избежание чрезмерного натяжения, должен быть в пределах 30…60°. При этом, чем больше глубина подводной прокладки, тем больше этот угол.

Кабелеукладчики рекомендуется применять только на мелководье, так как на больших глубинах невозможно проконтролировать процесс прокладки кабеля. Грунты при этом не должны быть выше III категории. На рис. 6.23 показана прокладка ОК через неглубокие водоемы при помощи кабелеукладчика.

Рис. 6.23. Прокладка ОК через неглубокие водные преграды при помощи кабелеукладчика.

Прокладка традиционных электрических кабелей связи через горные и сплавные реки показывает, что существующая технология (устройство вантовых переходов, значительное заглубление в дно рек с проведением дополнительных мер защиты) приемлема лишь для высокопрочных конструкций ОК.

Накопившийся опыт строительства ВОЛП показывает, что для пересечения водных преград необходимо применять ОК в круглопроволочной броне II типа (допустимое растягивающее усилие 20 кН) или I типа (80 кН).

Прокладка ОК без металлических элементов через отдельные водные преграды вызывает определенные трудности. Например, не исключается возможность всплывания кабеля при небольших перемещениях донных грунтов. При сильном течении воды кабель находится под дополнительной нагрузкой и нужно контролировать, чтобы уровень этой нагрузки не превысил допустимой. Поэтому прокладку кабеля рекомендуется выполнять с применением укладки защитного трубопровода и его заглублением в дно. Полиэтиленовые трубки, а на опасных участках стальные трубы, могут прокладываться (как подземный кабель) на глубине до 1,2 м. Преимуществом применения трубок является то, что при встрече с неожиданным препятствием (даже при пропорке грунта) возможные повреждения ограничиваются трубкой, а не кабелем.

При прокладке магистральных ОК первичной сети на переходах через внутренние водные пути - судоходные и сплавные реки, водохранилища - осуществляется резервирование кабельного перехода путем прокладки кабелей по двум створам (верхнему и нижнему), расположенным на расстоянии не менее 300 м друг от друга. При наличии на трассе мостов автомобильных дорог общегосударственного и республиканского значения допускается прокладка одного из кабелей по мосту. При этом в основном и резервном кабелях включается по 50% ОВ.

При невозможности бестраншейной прокладки ОК кабелеукладчиком, кабели на переходах через водные преграды прокладываются в предварительно разработанные подводные траншеи. Траншеи разрабатываются техническими средствами организаций, специализирующихся на подводных работах. На судоходных реках подводные траншеи в русле при глубине до 0,8 м можно разрабатывать экскаваторами. При больших глубинах экскаваторы необходимо устанавливать на понтонах, перемещаемых по створу перехода с помощью тросов лебедками.

Весьма эффективным и простым средством разработки траншей для прокладки ОК в несвязных и малосвязных грунтах являются гидромониторы, с помощью которых размывается грунт. Гидромониторы используются для размывания траншей глубиной до 2 м. На водных преградах глубиной 8…12м они обслуживаются водолазами.

Разработанные на заданную глубину подводные траншеи должны приниматься по акту комиссией. Акт приемки готовой траншеи является единственным документом, разрешающим прокладку кабелей на водных переходах.

Прокладка ОК на размываемых берегах, имеющих уклон более 30°, на подъемах и спусках должна производиться вручную зигзагообразно (змейкой) с отклонением от оси направления прокладки на 1,5 м на участке длиной 5 м. При прокладке ОК на крутых берегах и в скальных грунтах вырубают штробу. В скальных грунтах кабель прокладывают на песчаной подушке с толщиной верхнего и нижнего слоев не менее 15 см.

Для избежания повреждений подводных ОК зона выполнения подводных кабельных переходов ограждается на судоходных водных путях предостерегающими створными знаками судоходной обстановки - "Подводный переход". Эти створные знаки (створные столбы) устанавливаются на обоих берегах в 100 м выше и ниже по течению от места расположения кабельного перехода. Они должны хорошо быть видны с судов, иметь на своих вершинах диски диаметром 1,2 м, на которых изображается перечеркнутый полосой якорь.

6.4. Пересечение подземных коммуникаций методом горизонтального направленного бурения

Общие положения

Динамичное развитие техники и технологий, бурный рот городов и промышленных предприятий требует интенсивного строительства подземных коммуникаций различного назначения в экстремальных условиях, как на территории городов, так и за их пределами. Решить эти проблемы позволяет внедрение современных бестраншейных технологий прокладки подземных коммуникаций, позволяющих производить работы по прокладке и ремонту подземных коммуникаций различного назначения без внешних экскаваций с использованием техники и технологии горизонтального направленного бурения (ГНБ). Особенно это актуально при строительстве ВОЛП на участках с большим количеством пересечений с газопроводами, нефтепроводами, водными преградами и т.д.

Применение ГНБ позволяет:

  • существенно сократить, сроки выполнения работ и затраты на их проведение;
  • сохраняются все объекты благоустройства, озеленения и малые архитектурные формы по трассе бурения;
  • обеспечивается бесперебойная работа всех видов транспортных средств по магистралям, пересекающим трассу бурения, и объектов, на территории которых производятся работы.

Работы по пересечению подземных коммуникаций осуществляются с использованием мобильного комплекса горизонтального направленного бурения. Используемая техника позволяет прокладывать трубопроводы как пластмассовые, так и металлические.

Применение современной локационной системы обнаружения позволяет постоянно отслеживать положение буровой головки и на основе многопараметрических данных локации управлять процессом бурения.

Бестраншейные технологии применяются не только в тех случаях, когда строительство коммуникаций традиционным методами с внешней экскавацией грунта затруднено или невозможно. Существует и ряд других причин. Так, в ближайшее время предстоит работать в условиях жестких экологических ограничений. При этом пересекать малые реки мощной техникой уже не получится. Кроме того, транспортные артерии большинства городов построены на безальтернативной основе, когда при перекрытии движения транспорта по одной из них парализуется движение в целом районе.

Согласно данным в США и Европе бестраншейные технологии, основанные на горизонтальном направленном бурении – это хорошо сформировавшаяся отрасль строительного комплекса. Только в Америке есть более 30 ассоциаций, объединяющих специалистов в этой области – это союзы производителей, строителей, подрядчиков, использующих данную технику. В настоящее время метод ГНБ нашел широкое применение и у нас в России. Так, в Татарстане успешно работает компания «Эс-Ай-Ви Интертрэйд», которая специализируется на бестраншейном строительстве, ремонте и реконструкции подземных коммуникаций, используя технику и технологии горизонтального направленного бурения. При этом компания эксплуатирует буровые комплексы на базе установок горизонтального направленного бурения высокой и средней мощности производства американских компаний «Straightline» и «Robbins HDD». Установки ГНБ применяются специализированными предприятиями, занимающимися строительством ВОЛП в г. Самаре (ЗАО «ПМК-402»), в г. Саранске (ОАО «Связьстрой-4»), г. Ульяновске и ряде других городов различных регионов России.

В России на сегодняшний день сформировалось устойчивое сообщество профессионалов в области ГНБ. Их усилиями решаются существующие проблемы. Это обеспечит еще более стремительное внедрение бестраншейных технологий в повседневную практику строительства подземных коммуникаций.

Технология бестраншейного строительства методом ГНБ

Перед началом работ тщательно изучаются проектная документация (рис. 6.24), свойства и состав грунта, дислокация существующих подземных коммуникаций, оформляются соответствующие разрешения и согласования на производство подземных работ. Осуществляется выборочное зондирование грунтов и, при необходимости, шурфление особо сложных пересечений трассы бурения с существующими коммуникациями. Результаты этих работ имеют определяющее значение для выбора траектории и тактики строительства скважины. Особое внимание следует уделить оптимальному расположению обеспечению безопасных условий труда буровой бригады и окружающих людей.

Строительство подземных коммуникаций по технологии ГНБ осуществляется в три этапа: бурение пилотной скважины, последовательное расширение скважины и протягивание трубопровода.

Рис. 6.24. Изучение проектной документации по ГНБ.

Принцип работы ГНБ. Перед началом бурения, готовится вводно-бентонитная суспензия (буровая жидкость) с внесением в нее полимера. Относительное количество полимера, бентонита и расход суспензии определяются составом грунта. Примерный состав суспензии: для глинистых и мягких грунтов используется суспензия, в состав которой входит 1900л воды, 25кг бентонита и 1 литр полимера; для глинисто-песчаных грунтов используется суспензия, в состав которой входит 1900л воды, 50кг бентонита и 1,5 литра полимера. Расход суспензии на 100м бурения, расширения отверстия до 100мм и укладке трубы будет не более 1900 литров. Стоимость расходных материалов не превышает 5% стоимости бурильных работ.

Установка ГНБ закрепляется на исходной точке вертикальными стойками-упорами (анкерами) и бурильная лопатка с преобразователем, прикрепленная к первой штанге, вращательно-поступательным движением вводится в грунт под углом примерно 130.

На рис. 6.25 показан общий вид установки горизонтального направленного бурения «Robbins HDD», модель 1510TMSC.

В зону бурения под большим давлением, по внутреннему каналу буровой штанги и специальным отверстиям в бурильной лопатке (соплам), подается буровая жидкость, разжижающая грунт, формирующая в нем скважину. Буровая жидкость одновременно является смазкой между грунтом, буровыми штангами и коммуникационным средством при последующем его затягивании в скважину.

По мере вхождения бурильной лопатки в грунт, штанги автоматически подаются из кассеты и соединяются между собой при помощи конической резьбы. Оператор установки ГНБ при помощи рычагов управления может изменять вталкивающее усилие и частоту вращения бурильной лопатки. Важным условием долговечности работы буровых штанг является смазка из резьбы специальными смазочными материалами при свинчивании штанг в плеть. Форма бурильной лопатки позволяет изменять «угол атаки» при бурении, т.е. производить «руление» бурильной лопатки. При этом останавливается вращение лопатки в определенном положении, отслеживаемом на локаторе и производится только ее вдавливание. В зависимости от того, как расположена лопатка в данный момент времени, она может изменять направление движения под землей. За счет упругой деформации штанг на 90-метровом участке бурения возможно изменение направления бурения на 900.

Рис. 6.25. Общий вид установки ГНБ «Robbins HDD».

Оператор локационной системы во время процесса бурения постоянно отслеживает положение бурильной лопатки по трем координатам: пройденному расстоянию, глубине залегания бурильной лопатки и «углу атаки». Кроме того, эти данные оперативно передаются на информационный пульт оператора установки ГНБ, с которым оператор локационной системы также поддерживает радиосвязь. Это позволяет вводить плеть буровых штанг в грунт и выводить ее из грунта в расчетном месте с высокой точностью позиционирования. Возникшие под землей по маршруту бурения препятствия (крупные камни, металлические предметы и т.п.), можно обойти изменяя «угол атаки» бурильной лопатки. Для этого, необходимо вытащить плеть на одну – две штанги, выставить бурильную лопатку под определенным углом и вновь произвести вдавливание плети. За счет изменения «угла атаки» бурильная лопатка с плетью штанг изменит направление движения и обойдет препятствие. Для обхода крупногабаритных препятствий вышеуказанную операцию, при необходимости, проводят в несколько проходов. Если обойти препятствие вышеуказанным способом не представляется возможным, вместо бурильной лопатки используют шарошечный бур, которым в препятствии высверливается отверстие. После выхода плети штанг на поверхность земли, бурильная лопатка заменяется расширителем (риммером), который предназначен для расширения отверстия в грунте при обратном ходе плети – втягивании. При этом, буровая жидкость формирует скважину и наличие в вводно-бентонитовой смеси полимера, позволяет ей сохранять форму после прохождения риммера.

Планирование и расчет траектории бурения. Траектория бурения должна быть спланирована и рассчитана до начала проведения работ. Основные моменты планирования включают в себя определение длины и глубины пути, учет подземных препятствий, получение информации о существующих подземных структурах (наличие карт подземных коммуникаций), получение разрешений на проведение работ, уведомление служб единого вызова, аварийных служб и служб дорожного движения, инспектирование места работы, определение источников риска.

Траектория бурения может быть размечена прямо на поверхности, или на чертеже места производства работ (плане бурения). Расчет траектории бурения выполняется с помощью специальных диаграмм. Это позволит рассчитать минимальные радиусы кривизны плети штанг и укладываемого материала, углы входа и выхода бура по отношению к поверхности земли, дистанции возврата (расстояния от начала или конца пути бурения до точки горизонтального участка бурения). При расчетах траектории бурения должны быть учтены мощностные характеристики установки ГНБ при расширении скважин и затягивании коммуникационных средств, т.к. в этом режиме установка ГНБ работает на максимальных мощностных режимах.

На это этапе также должна быть произведена оценка условий почвы (уплотняемость, содержание влаги, пористость, липкость, наличие камней и подземных вод). Оценка условий почвы влияет на выбор инструмента и состав буровой жидкости. Комплектность инструмента и подбор состава суспензии также проводится на этапе планирования траектории. При планировании траектории бурения составляется контрольный перечень пунктов по планированию бурения, являющийся руководством для проведения работ.

Организация места работ. Проводится непосредственно перед началом бурения. Она включает в себя доставку комплекса ГНБ к месту проведения бурения, выгрузку установки ГНБ с трейлера, позиционирование установки на местности с учетом уклонов земной поверхности, выбор угла наклона буровой рамы установки.

Организация места работы предусматривает также настройку сигнализации предупреждения подземного столкновения с электрическими сетями, находящимися под напряжением, размещение защитных «зануляющих» матов, а также соединение матов, корпуса установки ГНБ, миксера (смесителя) и системы сигнализации кабелями, тестирование всей системы перед началом проведения работ.

Следующим этапом организации является анкерная фиксация установки ГНБ. После анкерной фиксации установки ГНБ производится запуск двигателей установки ГНБ, миксера для приготовления суспензии, приготовления вводно-бентонитовой суспензии и добавка в нее требуемого количества полимера, а также соединение шлангов гидросистемы. На протяжении всего этапа организации работы необходимо обязательно руководствоваться контрольным перечнем действий по организации места работ.

Выполнение пилотного бурения. Пилотное бурение (первичная проходка лопатки по заданной траектории) состоит из тех этапов: начала пилотного бурения, непосредственного выполнения пилотной скважин и заключительного этапа бурения, когда бурильная лопатка выходит на поверхность земли.

На первом этапе пилотного бурении необходимо загрузить первую штангу в направляющую раму и произвести ее сборку с буровой головкой, состоящей из бурильной лопатки, фильтра подачи суспензии и передатчика локационной системы. Перед свинчиванием буровой штанги и буровой головки необходимо тщательно смазать резьбовые соединения, так как от этого зависит долговечность службы штанг и бура. После выполнения операции сборки буровой штанги с буровой головкой необходимо с помощью переключателя управления подачи с насосно-нагнетательной станции буровой жидкости, пропустить жидкость через шланги в буровую штангу, ствол буровой головки, фильтр и сопла, убедившись в правильном функционировании гидросистемы и создании необходимого для выполнения бурения давления буровой жидкости. Для создания оптимальных условий вхождения бурильной лопатки в грунт и компенсации, возникающих при этом радиальных усилий, целесообразно прокопать входное отверстие, обеспечив перпендикулярность поверхности грунта к продольной оси буровой головки.

На втором этапе пилотного бурения оператор установки ГНБ производит непосредственное бурение, контролируя рычагами управления (джойстиком) поступательное и вращательное движение бура, наращивает плеть буровых штанг, с помощью загрузчика и специальных зажимов, отключая при этом давление буровой жидкости в гидросистеме. Кроме этого, находясь в постоянной радиосвязи с оператором локационной системы, оператор установки ГНБ обеспечивает направление движения буровой головки по заданной траектории, путем комбинации прямых проходов бура (при его вращении) с дугообразными (рулевыми). «Руление» происходит за счет поворота бурильной лопатки до нужной ориентации бурового скоса и последующего проталкивания бура без вращения, что приводит к нужному изменению направления движения. Первый этап «руления» выполняется для горизонтального выравнивания бура, когда буровая головка достигла необходимой глубины, определяемой локационной системой. Оператор локационной системы постоянно отмечает новую позицию, глубину и «угол атаки» бурильной головки, сверяет ее местонахождение с спланированной траекторией, определяет, требуется ли дополнительное переориентирование и наносит фактическую траекторию продвижения бура на план бурения.

Оператор установки ГНБ во время бурения не только контролирует величины осевого усилия и крутящего момента, но и регулирует объем подачи бурильной жидкости в зону бурения. При правильно установленном потоке буровой жидкости, обеспечивается охлаждение бурового вала, укрепление стенок туннеля и минимизация трения буровой головки о стенки скважины.

Пилотное бурение завершается, как только бурильная головка выходит на поверхность почвы, обычно в запланированной точке выхода. Поворот траектории горизонтального бурения к запланированной точке выхода. Поворот траектории горизонтального бурения к запланированной точке выхода не должен превышать ограничений радиуса изгиба, так как последний изгиб при пилотном бурении является первым изгибом при прокладке и/или расширении.

Когда оператор локационной системы видит, что бурильная головка сориентирована вверх, необходимо обезопасить зону вокруг точки выхода, и как только головка выйдет на поверхность, оператор установки ГНБ должен отключить подачу бурильной жидкости, продвинуть плеть вперед, чтобы освободить бурильную головку от земли и выключить двигатель. А затем отсоединить бурильную головку и извлечь передатчик.

При пилотном бурении формируется скважина диаметром 75-100мм, которая, как правило, может быть достаточной для прокладки кабелей связи. Однако, если нужно, то можно расширить скважину путем протягивания «риммера - расширителя» в обратном направлении.

Протягивание трубопровода. На противоположной от буровой установки стороне скважины располагается готовая к протягиванию плеть трубопровода. К переднему концу плети крепится оголовок с воспринимающим тяговое усилие вертлюгом и риммером. Вертлюг позволяет вращаться буровой нити и риммеру, и в то же время не передает вращательное движение на трубопровод. Таким образом, буровая установка затягивает в скважину плеть протягиваемого трубопровода по проектной траектории. Следует отметить, что диаметр сформированной скважины, как правило, должен быть на 30-50% больше диаметра затягиваемой в нее пластмассовой или металлической трубы без изоляции и в 2 раза больше, при затягивании в скважину трубы в изоляции. При затягивании трубы бентонит заполняет пустоты, затвердевает и предотвращает проседание грунта. Проверку целостности изоляции после прокладки трубы производят методом неразрушающего контроля. Затем в трубопровод (пластмассовая или металлическая труба) затягивают волоконно-оптический кабель. На рис. 6.26 показаны этапы горизонтального направленного бурения скрытых переходов для прокладки ОК.

Рис. 6.26. Этапы ГНБ скрытых переходов для прокладки ОК.

На заключительном этапе работ необходимо заровнять все проделанные экскавации грунта, убрать ограждения и восстановить озеленение. Регламентные работы комплекса горизонтального направленного бурения проводятся в соответствии со специальной инструкцией.

6.5. Рекультивация земель при строительстве ВОЛП

При строительстве ВОЛП на участках трассы, где проводятся работы по отрытию траншей и котлованов, в обязательном порядке должна производиться рекультивация земель.

Техническая рекультивация земель при строительстве линий связи заключается в снятии плодородного слоя почвы до начала строительных работ, транспортировке его к месту временного хранения и нанесении его на прежнее место. Приведение земельных участков в пригодное состояние производится в процессе выполнения работ, а при невозможности этого не позднее месячного срока после завершения работ, исключая период промерзания грунта.

В проекте рекультивации земель в соответствии с условиями предоставления земельных участков в пользование и с учетом местных природно-климатических особенностей должны быть определены: границы угодий по трассе кабельной линии связи, в которых необходимо проведение рекультивации; толщина снимаемого плодородного слоя почвы по каждому участку, подлежащему рекультивации; ширина зоны рекультивации в пределах полосы отвода; место расположения отвала для временного хранения снятого плодородного слоя почвы; способы снятия, транспортировки, нанесения плодородного слоя почвы и восстановления ее плодородия; допустимое превышение нанесенного плодородного слоя почвы над уровнем ненарушенных земель.

Работы по снятию, транспортировке, организации хранения и нанесению плодородного слоя почвы производятся силами строительной организации. Восстановление плодородия почв (внесение удобрений, вспашка, боронование посева, известкование и т.д.) обеспечивается землепользователями, которым передаются (возвращаются) эти земли.

Снятие, транспортировка и нанесение плодородного слоя почвы выполняются, как правило, до наступления устойчивых отрицательных температур. При необходимости проведения работ в зимний период плодородный слой почвы должен быть снят и складирован до его промерзания.

Плодородный слой почвы снимается с полосы, равной ширине траншеи по верху плюс удвоенная ширина бермы, а также с мест возможного загрязнения и порчи. Размеры принимаются в зависимости от типа механизма, способа разработки траншеи, глубины и числа прокладываемых ОК (защитных проводов). Размещение полосы рекультивации относительно оси траншеи, место расположения вынутого из траншеи грунта и плодородного слоя почвы показаны на рис.7.1.

Снятие и перемещение плодородного слоя почвы, как правило, производятся бульдозером вдоль оси траншеи с выездом к полосе отвала под углом 45°. Полоса отвала снятого плодородного слоя почвы должна быть параллельна оси траншеи. Передача рекультивированных земель землепользователям оформляется актом в установленном порядке.

Рис. 7.1. Схема работ при рекультивации при рытье траншей экскаватором: 1 - минимальная полоса, с которой снимается плодородный слой почвы (указывается в проекте); 2 - отвал плодородного слоя почвы; 3 - отвал минерального грунта из траншеи; 4 - траншея; 5 – кабель.